
Secure Coding

PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/03/$17.00 © 2003 IEEE � IEEE SECURITY & PRIVACY 57

During February and March 2002, all feature
development on Windows products at Mi-
crosoft stopped so that the complete Win-
dows development team could analyze the

product design, code, test plans, and documentation for
security issues. Our team at Microsoft named the process
the Windows Security Push. The security push process
was derived from the .NET Framework Security Push
project conducted in December 2001.

Most Windows feature teams finished the Windows
Security Push in March, and since then, the company has
performed many other pushes across its product line in-
cluding SQL Server, Office, Exchange, and others. This
article outlines the Windows Security Push process in de-
tail as well as the rationale behind it and some of the
lessons learned from it.

The rationale for the push
The driving force behind the Windows Security Push
was Bill Gates’ “Trustworthy Computing” memo of Jan-
uary 2002 (see www.microsoft.com/presspass/exec/
craig/10-02trustworthywp.asp for a copy). In that memo,
Gates outlined the need for more secure platforms on
which to build future solutions. These platforms should
not only be secure from malicious attack, he explained,
they should be more robust and afford users the privacy
they demand.

Another reason for the Windows push was the highly
successful .NET Framework push, which predated the
Gates memo. That push’s intent was to uncover any remain-
ing security issues before final release. The team behind it

felt that one big push at the end (in which
all team members spent time focusing on
nothing but security) would be worthwhile,
even if it meant slipping the schedule.

And it was worthwhile: the team made a few impor-
tant changes to the .NET Framework including placing
the State Service (an optional component used to main-
tain HTTP state) and the ASP.NET worker process (used
to create dynamic content on a Web server) in lower priv-
ileged accounts, rather than SYSTEM. Running code as
SYSTEM gives administrators minimum hassle, but such
a configuration ignores the principle of “least privilege.”
If hackers were to compromise the server, for example,
they could have used the ASP.NET process to run attack
code with SYSTEM privileges. Thus, changing the de-
fault configuration so that ASP.NET runs with minimal
privileges was a good idea.

The team also let administrators opt in support for
downloading and executing Internet-based code rather
than executing such partially trusted code with no inter-
action. Many threats come from malicious Internet-
borne code, so it made perfect sense to provide that func-
tionality as an option, not as a default.

A whole new generation of threats exists on the Inter-
net, which is another critical reason for the Windows Se-
curity Push. Technology that was secure eight years ago is
not secure enough today. A good example is NetDDE,
which is a mechanism for exchanging data between ap-
plications over a local network. NetDDE was appropriate
when it was conceived in the days of small workgroups in
which all users on a LAN could be presumed to be
trusted. The protocol, however, does not support authen-

MICHAEL
HOWARD
AND STEVE
LIPNER
Microsoft

Inside the Windows
Security Push

The Microsoft Windows development team spent two months

in 2002 analyzing product design, code, and documentation

to fix security issues. The results of this security push include a

new process and several lessons learned for future projects.

Secure Coding

tication, privacy, or tamper detection. Because PCs are
more interconnected now, we disabled the NetDDE ser-
vice by default in the Windows .NET Server 2003.

Although the Windows Security Push was modeled
on the .NET push, there was a big difference: scale.
Roughly 8,500 people comprise the Windows team—
about 1,000 comprise the .NET Framework team. In
later sections, we discuss how we scaled the process to de-
ploy the entire Windows team in a coordinated securing
effort. But first, let’s look at what the security push process
involves. At a high level, it consists of four distinct needs:

• Education
• Analysis and review
• Constructing threat models
• Making design changes

Education
The first part of any security push must be education, be-
cause we cannot assume that everyone understands how
to build secure software. In our experience, many devel-
opers think “secure software” means “security features.”
This assumption is simply wrong. Secure software means
paying attention to detail, understanding threats, building
extra defensive layers, reducing attack surface, and using
secure defaults. Layering an application with security
technology won’t fix implementation issues such as buffer
overrun vulnerabilities. Furthermore, such technology
will not render a design secure if it does not mitigate the
primary threats to the system.

Although the Secure Windows Initiative team pro-
vided security training to component development teams
across the Windows division during the year before the
security push, we believed that ensuring a common level
of understanding via division-wide mandatory training
would be worthwhile.

We provided three training tracks during the push:
one for designers, program managers, and architects, an-
other for developers, and a third for testers. Documenta-
tion people attended the track appropriate for the docu-
mentation they were supposed write. Each training
session occurred five or six times, with a total of 8,500
people attending over a 10-day period. Approximately 12

percent came to more than one training session. We broke
the security push training into two halves: the first half
outlined security push logistics, organization, and
process, and the second covered technical material appro-
priate to the class attendees’ role.

Designers
The training reinforced the mindset of doing whatever it
takes to reduce the product’s attack surface. Our view is
that if a feature is not enabled by default, it is much less
likely to be attacked; if that feature runs with reduced
privilege, then the potential for damage reduces even
more. We saw the effect of such thinking in the Windows
.NET Server 2003 project—the number of features en-
abled by default is greatly reduced compared to Windows
2000. We know that we didn’t reach perfection and that
vulnerabilities will still exist in Windows .NET Server,
but we also know that the overall potential damage is re-
duced because so many features no longer run by default.
Reducing this number also pays off by reducing the ur-
gency with which an IT manager needs to apply patches
when vulnerabilities appear. A patch is still issued, but the
urgency to deploy the fix is reduced. There is a downside,
though: features that previously ran by default now must
be enabled if the administrator needs access.

Developers
In the training, developers learned the golden rule of
never trusting input. There comes a point in the code at
which data from an untrusted source is deemed well
formed and correct. Until that point, a developer must be
very careful with the data. In our experience, most secu-
rity vulnerabilities are due to developers placing too
much trust in data correctness. Common practice is to
teach developers to stay away from certain coding tech-
niques and function calls, such as the much-maligned C
strcpy function when considering buffer overrun is-
sues. The problem is not with strcpy, but with the de-
veloper trusting the source data to be no larger than the
target buffer’s size. Simply teaching people to stay away
from certain function calls, rather than educating them
about why the function is dangerous, leads to only mar-
ginally more secure products.

Testers
The principal skill we taught testers was data mutation or
intelligent fuzzing. Data mutation involves perturbing the
environment such that the code that handles the data en-
tering an interface behaves insecurely. The process in-
volves deriving application interfaces from the applica-
tion’s threat model (threat modeling is discussed later in
this article), determining the data structures that enter the
interfaces, and mutating that data in ways that cause the
application to fail. Example perturbing techniques in-
clude wrong sign, wrong data type, null, escaped data, out

58 JANUARY/FEBRUARY 2003 � http://computer.org/security/

Microsoft constantly hires new

employees, and frankly, most of

them have little knowledge of

how to build secure software.

Secure Coding

of bounds, too long, too short, and zero length data.
A good threat model includes an inventory of attack

targets in the application, which is an incredibly useful
starting point for the tester. For each threat in the threat
model, there should be at least two security tests: a “white
hat” test to verify that mitigation techniques work and a
test that tries to find ways to make them fail. Threat-miti-
gation methods such as authentication, authorization,
and encryption have broad attack techniques associated
with them. A tester, for example, could attempt to cir-
cumvent authentication by constructing a test tool that
attempts to downgrade to a less secure authentication.

We also urged testers to run tests under a nonadminis-
trative account. We did this for two reasons: to uncover
usability issues and to test cases in which applications fail
because the code was written and tested using administra-
tive accounts. Luckily, this failure mode is relatively rare.
However, the second reason is directly useful from a secu-
rity-testing standpoint: testers should attempt to compro-
mise the system as a nonadministrator. Compromising
the system from an administrative account is a moot
point: if the tester is already an administrator, he or she al-
ready owns the system.

Improved training courses
We realized that one training course was not enough. The
purpose of the training was not to teach designers every-
thing about building secure software—rather, it was to
raise awareness, identify common mistakes, and teach se-
curity basics. The following weeks of the push served as
homework or “projects courses.” During this time, team
members had the chance to exercise what they had
learned and had access to “tutors” from the Secure Win-
dows Initiative team.

We also gave all product group members copies of
Writing Secure Code1 and directed them to it as their first
point of reference. We knew we would get many ques-
tions during the course of the push, and the book helped
immensely to lighten the load on the Secure Windows
Initiative team members.

The educational material was augmented with best-
practice checklists for developers, testers, and designers.
Although these checklists are useful, we feel they are a
minimum security bar.

We also realized that our training of current employees
was not enough. Microsoft constantly hires new employ-
ees, and frankly, most of them have little knowledge of
how to build secure software. Thus, we now have security
bootcamp training for new product group employees.

Analysis and review
The first part of the push process proper was to build an
inventory of source code files and assign a developer to re-
view each one. During the security push, developers
must review the code, looking for security flaws and file

bugs. The most productive way to review code is to fol-
low the data flow through the application, questioning as-
sumptions about how the data is used and transformed.
However, the going is slow—about 3,000 lines per day to
perform the task effectively.

We also used tools developed by Microsoft Research
to analyze code. These tools help detect common code-
level flaws such as buffer overruns and are constantly up-
dated as we learn about new vulnerability classes. Al-
though these tools are useful and improve the process’s
scale and efficiency, they cannot replace a well-educated
brain taught to find security bugs.

We made an interesting discovery during the security
pushes, domain experts—when instilled with a degree of
security expertise—found new classes of issues as they
looked at their bailiwick in a new light. We document
many of these findings at http://msdn.microsoft.com/
columns/secure.asp.

Constructing threat models
The prime deliverable for designers was threat modeling.
We believe that understanding threats is the only way de-
velopers can build secure software. Once they understand
the threats to the system, they can determine if the threats
are appropriately mitigated. Threat modeling follows a
set, but not new, procedure:2

1. Decompose the application. The first phase is to determine
the system’s boundaries or scope and understand the
boundaries between trusted and untrusted compo-
nents. UML activity diagrams and dataflow diagrams
are useful for such decomposition.

2. Determine threat targets and categories. The next step is
to take components from the decomposition process,
use them as the threat targets, and determine the broad
threat categories to each target. The concept we use to
define threat types is called STRIDE (spoofing, tamper-
ing, repudiation, information disclosure, denial of ser-
vice, and elevation of privilege). Think of STRIDE as a
finer-grained version of CIA (confidentiality, integrity,
and availability).

3. Identify attack mechanisms. The threat tree (derived from
hardware fault trees) describes the decision-making
process an attacker would go through to compromise a
component. When the decomposition process gives an
inventory of application components, we can start iden-
tifying threats to each of them. Once we identify a po-
tential threat, we then determine how that threat could
manifest itself via threat trees. Each attackable threat tar-
get will have one or more threat trees outlining how the
component could be compromised.

4. Respond to the threats. Finally, we need mitigation tech-
niques for each threat. The threat type drives mitigation
techniques—for example, spoofing threats can often be
solved by authentication, tampering threats by encryp-

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 59

Secure Coding

tion, message authentication codes, digital signatures, or
access control mechanisms.

We found threat modeling to be of great benefit for
many reasons. It

• Helps determine the main threats to the system, the cat-
egories of threats, and whether the threats are mitigated

• Finds different issues than code reviews usually find,
such as bugs

• Can drive the testing process

As design teams completed their threat models, we
used them to focus code review and testing on compo-
nents in which the threat models showed that errors
would most likely result in security problems. These fo-
cused review and testing efforts were especially produc-
tive in directing our efforts toward key issues, such as en-
forcing least privilege and disabling unused features.

Making design changes
The threat modeling process was also instrumental in di-
recting the Windows team toward design changes that
would eliminate vulnerabilities and reduce Windows’
susceptibility to attack. In some cases, we made specific
changes that eliminated product vulnerabilities. In others,
as discussed earlier, design changes reduced the attack sur-
face by disabling features via default or reducing privilege.

We also introduced design changes that would im-
prove the resistance of Windows to attack even when vul-
nerabilities remained. For example, we changed Internet
Explorer’s default behavior so that frame display is dis-
abled in the browser’s “restricted sites” zone. Because Mi-
crosoft email programs display HTML email messages in
the restricted sites zone by default, this change eliminates
HTML email as an attack vector to exploit vulnerabilities
in the frames mechanism.

Also, designers added a new privilege that restricts
which accounts can impersonate other accounts. By de-
fault, only administrators and services have this privilege.
The threat is small but real: if a less-privileged user could
install some malware on a computer and convince a more
privileged user to connect to it using an interprocess

communication method such as named pipes, the rogue
application could potentially impersonate the more priv-
ileged account. This is no longer the case in Windows
.NET Server 2003.

We also disabled by default or moved to lower privi-
lege accounts more than 20 system services.

We made a number of similar design changes with the
aim of improving the ability of Windows to remain secure
even in the presence of vulnerabilities undetected during
the security push. For example, Windows .NET Server
2003 is now compiled with the Microsoft Visual C++
-GS flag, which helps detect some forms of stack-based
buffer overruns at runtime. (For more information, see
ht tp ://msdn.microso f t . com/l ibra r y/en-us/
dv_vstechart/html/vctchCompilerSecurityChecksIn-
Depth.asp.)

Sample code
Each Windows version includes several software develop-
ment kit (SDK) code samples, which help customer de-
velopment staffs build custom applications that can use
the product’s features. We know that many customers
begin with our sample code and modify it as needed to
implement their applications. We realized early in the se-
curity push process that insecure sample code can lead to
insecure end-user applications, so we categorized all sam-
ple code as requiring intensive security review to provide
customers with guidance on how to build safe and secure
applications.

Sign off
The security push process identified an individual “owner”
for each source file in Windows. The security push ended
when each source file was “signed off” by its owner as hav-
ing been reviewed to a depth appropriate to the file’s expo-
sure (as determined in the threat models). This sign-off
process makes the role, importance, and accountability of
individual contributors’ efforts especially clear.

Targets
All security pushes have followed a common model
when determining which code base to target: the cur-
rent version in development is the focus of the push,
and issues are then ported to service packs for the prod-
uct’s current shipping version. The rationale for target-
ing the code base in development is that making large
changes to a nonshipping product is much easier than
doing it once a product has shipped. We take this ap-
proach if a product has not shipped yet (more time for
regression tests) and because we cannot readily change
the default settings for a released product. We could ask
users if they want the default changed at service pack
installation time, but we can’t question them too often
(to avoid confusion and annoyance at the onslaught of
dialog boxes).

60 JANUARY/FEBRUARY 2003 � http://computer.org/security/

We made a number of similar

design changes with the aim of

improving the ability of Windows

to remain secure.

Secure Coding

Understanding that a security push is only the start of a
cultural change within Microsoft is important, and

we make this obvious to all team members. The days of
creating designs and code that emphasize features over se-
curity are over, and what was acceptable just three or four
years ago is simply not tolerable today. We have discovered
that security push education followed with an intensive pe-
riod of design, code, test, and documentation scrutiny in-
stills good habits. More importantly, a critical mass of peo-
ple at Microsoft really understands security, which affects
those around them.

However, having one or more security pushes does
not in itself ensure the delivery of secure software: the
purpose of a security push is to start process change. To
this end, we are modifying our development processes:

• Mandatory security training for new employees
• Threat modeling as a prerequisite for the design com-

plete milestone
• Security design, code, and test guidelines
• Time built into the schedule for ongoing security re-

views
• Time built into the schedule for a security push focused

on code reviews and testing
• Ongoing security education

In the near term, most people outside Microsoft will
perceive the effects of the Windows Security Push by ob-
serving the Windows .NET Server 2003 product. The
security push changed the product in four fundamental
ways:

• It found and removed previously undiscovered vulner-
abilities.

• It changed the ways in which the product is imple-
mented so as to reduce the likelihood that undiscovered
vulnerabilities remain.

• It changed the product’s design so that fewer features
and services are enabled by default; if vulnerabilities re-
main in these features or services, they will be of less
concern to the majority of customers who use the
product.

• It changed the product’s design so that the effect of re-
maining vulnerabilities will shrink by introducing a de-
gree of defense in depth into the product’s design.

Overall, we believe that these changes created a prod-
uct that customers will perceive is significantly more se-
cure when compared with its predecessors. For articles
and developer material about some of the findings from
the push, see the following Web pages: http://msdn.
microsoft.com/library/en-us/dnsecure/html/strsafe.asp;
http://msdn.microsoft.com/library/en-us/dncode/
html/secure01192002.asp; and http://msdn.microsoft.
com/library/en-us/dncode/html/secure08192002.asp.

We are in the process of measuring the security push’s
effectiveness in achieving two objectives: improving the
product’s security and improving the software develop-
ment processes. Informally, we have observed that the
Windows Security Push improved both the security of the
Windows code base (by removing vulnerabilities, adding
defense in depth capabilities, and reducing attack surface)
and the effectiveness of Windows developers at producing
secure code. On that basis, we consider the investment that
the security push required to have been worthwhile.

References
1. M. Howard and D. LeBlanc, Writing Secure Code,

Microsoft Press, 2001.
2. E. Amoroso, Fundamentals of Computer Security Technology,

Prentice Hall, 1994.

Michael Howard is a senior security program manager in the
Secure Windows Initiative at Microsoft. He coauthored Writing
Secure Code and Designing Secure Web-based Applications
for Microsoft Windows 2000, both from Microsoft Press. Con-
tact him at mikehow@microsoft.com.

Steve Lipner is the director of security assurance at Microsoft.
He has over 30 years’ experience with computer and network
security research and product development. He is a member of
the US National Computer Systems Security and Privacy Advisory
Board. Contact him at slipner@microsoft.com.

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 61

computer.org/join/grades.htm

GIVE YOUR CAREER A BOOST

UPGRADE YOUR MEMBERSHIP

Advancing in the IEEE Computer Society
can elevate your standing in the profession.

Application to Senior-grade membership
recognizes

✔ ten years or more of professional
expertise

Nomination to Fellow-grade membership
recognizes

✔ exemplary accomplishments in
computer engineering

REACH
HIGHER

