
24 March/April 2023 Copublished by the IEEE Computer and Reliability Societies 1540-7993/23©2023IEEE

Inside the Windows Security Push:
A Twenty-Year Retrospective
Steve Lipner | SAFECode
Michael Howard | Microsoft

This article is a follow-up to an article on the Windows security push in the first issue of IEEE Security and
Privacy (January 2003). It provides additional detail on the security push and its results, and describes
the creation and evolution of the Security Development Lifecycle (SDL) that integrated software security
into Microsoft's development process. The article concludes with a summary of lessons learned about
effective ways of creating secure software at scale.

I n the first issue of IEEE Security & Privacy (January
2003), we published an article entitled “Inside the Win-

dows Security Push.”1 The article described some aspects of
an intense effort by the entire Windows Division at Micro-
soft to improve the security of the next release of the Win-
dows Server software. The security push was conducted in
early 2002 and the development of the Windows Server
release was still underway when the article was published.

The editors of IEEE Security & Privacy asked us to
revisit the article and the security push effort on the
occasion of the magazine’s 20th anniversary. In this
article, we’ll amplify some points in the original arti-
cle and correct a few errors. We’ll also trace the impact
that the security push had on secure development prac-
tices at Microsoft through 2015 (when Lipner retired
from Microsoft) and across the software industry to
the present day. Finally, we’ll summarize key lessons
learned that are important to organizations that seek to
deliver secure software to their customers.

Revisiting the Security Push

Origins
The security push was launched at a time when Micro-
soft was undergoing something of a software security

crisis. In late 2000 intruders gained access to the Micro-
soft corporate network. The intrusion was made pub-
lic and raised concerns by customers as well as the U.S.
Government. The summer of 2001 saw the release of
the major Code Red and Nimda Internet worms. While
the intrusion did not result from exploitation of vulner-
abilities in Microsoft software, the worms did, further
magnifying customer concerns and pressure on Micro-
soft management to “do something.”

In 2001, Craig Mundie, then a Microsoft senior vice
president and chief technical officer, and the late Howard
Schmidt, then chief information security officer, began
to advocate within Microsoft for expanded attention to
product security. The Secure Windows Initiative (SWI)
team in the Windows development organization, which
had been formed in early 1999, began to emphasize secu-
rity training for developers in the Windows Division and
across the company, and the Microsoft Security Response
Center (MSRC—Microsoft’s Product Security Incident
Response Team) stepped up its efforts to release timely
fixes for reported vulnerabilities. (Over the last 20 years,
the name of the team at Microsoft that creates and man-
ages secure development processes has changed several
times. For simplicity, this article stays with the original
name—the Secure Windows Initiative or SWI).

By the fall of 2001, it was clear that Microsoft was
not making enough progress. Vulnerability reports con-
tinued to arrive and were often released to the public

Digital Object Identifier 10.1109/MSEC.2022.3228098
Date of current version: 10 April 2023

https://orcid.org/0000-0002-6476-462X

www.computer.org/security 25

rather than being reported privately so that Microsoft
could release fixes to protect customers from exploita-
tion. Windows XP, a new release that had undergone
SWI reviews and some developer security training,
seemed to have no better security than prior versions.

In early November, a brainstorming effort at a joint
offsite meeting of the SWI and MSRC leaders surfaced
the ongoing .Net Framework security push and raised
the question “could we do that for Windows?” One of us
(Lipner) raised that idea in a meeting with the manager
whose team included the SWI and MSRC. The response
was that the idea seemed half baked (it was) and that
there was great concern about whether the engineers in
the Windows Division would take the effort seriously.
(“They’ll just roll their eyes.”) But that meeting launched
a two month-long planning effort that nailed down many
of the details described in the original security push
article: training sessions, running the then-available
static analysis tools, signoff on every source file, relying
on the techniques documented in Writing Secure Code.2
Michael and David LeBlanc wrote Writing Secure Code
as a response to common security questions from engi-
neering teams. They wanted to focus on hard problems
rather than day-to-day minutiae, so they wrote down the
elements of secure design, coding, and test. The book
proved to be a great teaching resource and reference dur-
ing the security push.

Through December 2001 and January 2002, we con-
tinued to plan, create training materials, and brief pro-
gressively higher levels of management. At some point
in mid-December, a senior executive asked what dates
he should reserve the 1,000-person meeting room in
the Microsoft Conference Center for the training ses-
sions, and at that point we concluded that the security
push was approved.

While the security push planning was going on, dis-
cussions of a corporate commitment to product secu-
rity had continued. They culminated in mid-January
with Bill Gates’ release of the Trustworthy Computing
(TwC) e-mail.3 While the TwC e-mail and the secu-
rity push were pursued somewhat independently, they
were synergistic: The TwC e-mail was a major factor in
causing developers to take the security push seriously,
and the security push was a major factor in convincing
doubters inside and outside the company that Micro-
soft was serious about improving security.

Execution
The security push began in late January 2002 with
training for every engineer working on the new Win-
dows release. Over a period of five days, the SWI team
delivered ten four-hour training sessions to groups of
around 900 engineers. (The original article refers to
ten days of training, but that is an error.) Each training

session was introduced by a vice president from one of
the teams in the Windows Division. Any reader who has
worked in a large organization knows how this normally
works—the vice president stands up and says, “this is
really important; pay attention,” then leaves the room.
In the case of the security push, the vice presidents gave
their introduction then sat down and stayed for the full
four-hour training. We have always believed that detail,
like the TwC e-mail, was a major factor in the develop-
ers’ belief that Microsoft was serious and their commit-
ment to the security push.

One aspect of the security push that we didn’t ade-
quately emphasize in the original article was the man-
agement of the ongoing process. With 8,500 developers,
the Windows Division had an established process for
tracking progress, approving changes, and ensuring
that Windows continued to progress against its release
goals. The Windows Division leadership managed the
security push as a normal Windows development activ-
ity. A shiproom (“war team”) meeting each morning
reviewed statuses, assigned problems for action, and
reviewed changes. While changes to make code con-
form to the guidance in the training and Writing Secure
Code or to fix errors discovered by static analysis or test-
ing were automatically approved, design changes such
as decisions to remove components or disable them by
default were discussed at the morning’s shiproom meet-
ing. The progress and achievements of the security push
were the primary focus of the weekly Friday-afternoon
all-hands meetings for the entire Windows Division,
and the executive who led the division handed out cash
prizes for the “best bug” of the proceeding week. An
oft-cited favorite “best bug” was the “oldest bug written
by the most senior person”.

Not everything went smoothly during the security
push. Threat modeling was in its early days in 2002,
and our guidance and training were only actionable
by experts at software security. One of us remembers
a development lead (who later became responsible for
Microsoft’s product and online service security efforts)
becoming frustrated and angry with the difficulty of fol-
lowing the guidance about threat modeling. The secu-
rity push did produce threat models and used them, but
the best were developed with the aid of SWI team mem-
bers or of some consultants who were on site during the
push. The following sections mention the evolution of
threat modeling after the security push.

One useful precedent that the security push set was
the introduction of code-level mitigations. Mitigations
serve to reduce the severity or exploitability of vulner-
abilities that tools and code reviews miss. For example,
Visual C++’s stack-based memory corruption detection
flag, -GS, was mandated. For Windows Server 2003, this
was the only security-related compiler flag we had, but

26 IEEE Security & Privacy March/April 2023

over the years many more would follow. We also started
to focus on banning certain types of potentially danger-
ous C functions, including strcpy(), strncpy, sprintf(),
get(), and many more. (A copy of the C header that
bans potentially dangerous C runtime functions is avail-
able at Michael’s GitHub repo.4)

The original plan for the security push had been to
review both the Windows Server version in develop-
ment and Windows XP (which had shipped in August
2001). The modified code would ship as a new release of
Windows Server and as Service Pack 1 for Windows XP.
The plan to include Windows XP in the security push
was dropped midway through the push for three reasons:

1. There was concern that customers would be unwill-
ing to install a service pack that made the number
of changes that the security push planned to make.

2. There was concern that some of the feature changes
(e.g., removing features or disabling them by
default) would have a negative impact on custom-
ers who were using Windows XP.

3. Microsoft’s antitrust settlement with the U.S. Depart-
ment of Justice required changes to the Windows
default browser option by a specific date. That date
was incompatible with the planned release date of the
codebase that was going through the security push.

We included a small number of the most important
code security fixes in Windows XP Service Pack 1, and
it shipped well before the Server release. But we later
delayed the Windows development process to ship a
security-focused Service Pack 2 in 2004 and then had
to delay the following desktop operating system release
(Windows Vista) to transition the desktop product to
the more secure Server codebase.

Late in the security push, the Windows team decided
to restrict the default functionality of the browser
(Internet Explorer or IE) drastically. Internet browsers
were at that time (and remain) a rich source of product
vulnerabilities and of risk to users. While the browser
team did participate in the security push, the product
team believed that the risks posed by using a browser on
a server remained high and browsing Internet websites
is not a primary usage scenario for a server. The team
restricted the “IE Enhanced Security Configuration”
significantly enough so that an administrator could use
the browser for downloading software updates but not
much else, and as a result that configuration was resil-
ient to many common browser attacks.

The testing activities during the security push were
not a penetration test as such, but they did discover
many vulnerabilities and some new classes of vulner-
abilities. The magnitude of the changes made by the
security push was significant: In addition to reviewing

all Windows components (tens of millions of lines of
code), the team made several thousand code changes to
eliminate real or potential vulnerabilities. The develop-
ers were instructed not to try to decide whether code
that didn’t conform to the guidance in Writing Secure
Code was an actual vulnerability, but, as Michael repeat-
edly said, to “just fix it.” In our experience, such deter-
minations were more often wrong than right and took
more time and effort than making and testing the code
change to eliminate the suspicious code.

After the end of the formal security push at the end
of March 2002, the Windows team returned to a more
normal set of development activities. Those activities
included completing feature modifications that had been
specified and designed during the security push but not
implemented and testing the product to ensure that the
security push modifications had not compromised reli-
ability, application compatibility, or performance.

Results
The security push release—Windows Server 2003—
shipped in the early spring of 2003, a few months after
the original article was published. Customers reacted
positively to the release, and it did well in standing up to
the perpetual onslaught of vulnerability reports. There
was no customer pushback against the restricted browser
configuration, and customers appeared to appreciate
this example of reducing the system’s attack surface.

In the summer of 2003, the Blaster worm was loosed
on the Internet. The class of coding error exploited by
the worm was called out for remediation as part of the
security push, but a reviewer missed the instance of vul-
nerable code that the worm exploited. (There was then
no tool that would flag that code pattern automatically.)
Fortunately, the -GS mitigation prevented the worm
from infecting an exposed system—the system would
crash but not propagate the worm. The team felt that
this result vindicated both the security push approach
in general and the commitment to introducing miti-
gations that would prevent exploitation of remaining
vulnerabilities.

As the original article mentions, other major Micro-
soft products went through security pushes of their
own after the Windows push had wound down. The
target versions of those security pushes shipped as new
releases in some cases and as service packs in others.
The SQL Server experience was particularly notewor-
thy: The SQL team did their push on SQL Server 2000,
Service Pack 2 and shipped it in January 2003—the
same week as the release of the very damaging Slam-
mer worm. Unfortunately, few SQL Server admins had
installed the service pack prior to the worm’s release,
and the impact of the worm was considerable. But as
Service Pack 2 became the dominant version of SQL

www.computer.org/security 27

Server in the field, we found that the rate of vulnerabil-
ity reports also dropped precipitously—another valida-
tion of the security push approach.

Creating the SDL
No one at Microsoft believed that the security pushes
had solved the company’s security problems, and the
Slammer (January 2003) and Blaster (July 2003)
worms reinforced the view that software security would
be an ongoing challenge and that more work was needed
to live up to the TwC commitment. Jon DeVaan, the
engineering executive responsible for customer satis-
faction initiatives, asked Lipner to lead a cross-product
group team to consider ways to improve customer satis-
faction with product security.

At a high level, the solution to the customer satis-
faction problem was “fewer vulnerabilities, no worms,
less and better patching” but the working group drilled
into what specifically could be done and how the SWI
team, which was gradually being augmented with more
developers and program managers, could contribute.
Through late 2002 and most of 2003, the SWI team
focused on supporting security pushes, delivering secu-
rity training, and building its capability to discover vul-
nerabilities without waiting for external researchers to
report them. The team also participated in the plan-
ning and engineering of Windows XP Service Pack 2,
in particular playing a key role in the introduction of
Data Execute Protection, a mitigation for memory cor-
ruption vulnerabilities made possible by the introduc-
tion of the hardware No eXecute (“NX”) technology5
in new processors.

In late 2003, Craig Mundie raised the need for a more
systematic and widespread commitment to software
security. Lipner followed up with a series of meetings
with the customer satisfaction team and with product
group executives to discuss the idea of a mandatory pro-
cess and get feedback on what would work. The social-
ization of that idea culminated in a presentation by
Lipner and Mike Nash (the vice president responsible
for the SWI team) to CEO Steve Ballmer and his staff.
The presentation proposed a “security development
lifecycle” or SDL that would incorporate mandatory
security training for engineers and a set of mandatory
technical requirements that products would have to
meet before they shipped. The proposal included the
notion that the SDL would be updated over time as
threats and secure development techniques evolved.
Ballmer’s response at the end of the briefing was, “that’s
approved; we’re not ever going to talk about it again.”

The authors and Eric Bidstrup immediately began
to document the requirements of the initial SDL ver-
sion. Key elements of the SDL, in addition to annual
developer training, were threat modeling, use of secure

coding techniques, static analysis, enabling mitigations,
security by default, tracking of imported components,
and a security push. The SWI team would oversee a
“final security review” or FSR that verified that the
product team had met the SDL requirements and could
include a penetration test of the finished product.

The initial version of the SDL (Version 2.0—we felt
that the security pushes had been a de facto v 1.0) was
detailed in a Word document and became mandatory
on 1 July 2004.

Executing and Updating the SDL
Once the SDL mandate became effective, the SWI team
immediately began to work with product groups to help
them meet the SDL requirements, and to ensure that
they had done so. Part of this role involved delivering
in-person training to product group engineers. (This
task was a major consumer of Michael’s time during the
early days of the SDL.) Because of our experience going
back to the Windows security push and before, the team
was well-prepared for this task although ill-prepared for
the number of people who had to be trained. (During
the presentation to gain approval for the SDL, Steve
Ballmer remarked to Lipner and Nash, “you guys don’t
have any idea how many engineers this company has.”)

Working with Product Groups
Helping product groups meet the SDL requirements
and ensuring they’d done so was sometimes a challenge.
While any group that had conducted a security push was
well positioned to meet the SDL requirements, teams
new to the process could present surprises. A couple
of examples from the SDL’s early days illustrate this:

 ■ One product underwent a penetration test and was
shown to be riddled with vulnerabilities. We deter-
mined that it wasn’t fit to ship, and rather than tell the
team merely to fix the vulnerabilities, we insisted that
they delay shipping, go back, and actually execute the
activities that the SDL required. When they returned
for a second FSR, their new penetration test was
clean—it was clear that they’d actually done the SDL.
We asked the product group to fix the one or two vul-
nerabilities found and approved the product for release.

 ■ A product that had come to Microsoft through an
acquisition went through the SDL. As the SWI team
member assigned to the product worked with the
product group, it became evident that the product’s
architecture was fundamentally flawed: any attacker
who turned their attention to a system running the
product would be able to “own” it. The vulnerable
product was already in customers’ hands so telling the
product group not to ship would not have improved
the situation. We (Lipner and Matt Thomlinson who

28 IEEE Security & Privacy March/April 2023

then oversaw the program management team that
worked with product groups) met with the prod-
uct group executive and described the situation. We
asked that the executive make a set of changes that
would slightly mitigate the product’s problems and
that he commit to making the major changes to elimi-
nate the vulnerable architecture in a future release.
The executive agreed, the product shipped with the
modest changes, and a few years later the product
group shipped a major revision with a secure architec-
ture. We got lucky—vulnerability researchers never
discovered or exploited the vulnerable architecture.

Like the security pushes, the SDL was primarily a
product group responsibility. The SWI team would nor-
mally assign a single program manager as security advi-
sor to work with a handful of smaller products or one
or two major products. The program manager could
assess compliance with most SDL requirements by run-
ning a tool or by executing a query against the product’s
bug tracking system. Only threat models stood out as
requiring more in-depth review.

Of course, the fact that the SDL was a product group
responsibility meant that product groups had to assign
engineers to assuring that the team understood and met
each of the SDL requirements. For a smaller product, one
engineer might perform this task, while larger products
created groups to provide training local to the group, help
with threat models and make sure that tools were run and
bugs fixed. (In the case of Windows, the security assur-
ance group comprised tens of engineers.) These product
team security groups comprise the “satellite” as detailed
in the Building Security In Maturity Model research.6

Early in the evolution of the SDL, the SWI team took
the position that “we can stop you from shipping.” After
a few years, at the suggestion of Scott Charney who suc-
ceeded Nash, we changed to a risk acceptance process in
which the product group could approve shipping with
exceptions to the SDL, but only after a joint review with
the SWI team. Shipping with a major (“critical”) vulner-
ability required a review meeting between the product
group vice president and the vice president who over-
saw the SDL. Less serious exceptions were reviewed by
lower levels of management from the respective teams.
In practice, if an exception reached a product group vice
president, their reaction was almost always “what do
you mean you can’t fix that?” Approval of serious excep-
tions was rare.

Updating the SDL
When we sought approval to mandate the SDL in 2004,
we made it clear that the specific requirements would
evolve with the security landscape. The requirements
in SDL Version 2.0 were uncontroversial—they were

basically the security push requirements that many
teams had been exposed to. One question that we had
to confront early in the life of the SDL was “how will we
decide on changes?” Jon DeVaan provided useful advice
encouraging us to socialize changes with the product
groups to avoid a product group rebellion or passive
refusal to comply.

We recast the product security customer satisfaction
team as the SDL Advisory Board and reviewed pro-
posed changes and issues with SDL requirements with
the board at a few points during each SDL update cycle.
(Update cycles varied from a minimum of six months to
a maximum of 21 months, with most updates annual.)
When we issued the first update to the SDL, we had to
decide on a transition rule so that product groups would
know which version of the SDL was mandatory. We
decided that a product would be held to the SDL ver-
sion in place when development started or to the latest
SDL version that had been in place for a year or more
when the product shipped, whichever was newer.

We treated the SDL updates as though they were
product releases with the product teams as our custom-
ers: Each update, whether a new process requirement or
a new tool or both, went through a requirements review
and a beta test. Proposed requirements were dropped if
they were insufficiently executable by the product teams
and tools were dropped if they were unreliable or gener-
ated too many false positives. Here too, we applied a risk
management approach: If a class of vulnerability was very
serious and it was clear that external security researchers
or malicious attackers were focusing on it, that might jus-
tify adding an immature requirement or tool to the SDL.
This was the case if the tool or requirement was the best
we had, and the alternative was responding to a deluge
of vulnerability reports with a deluge of patches.

We created new SDL requirements and tools mainly
in adherence to Rick Proto’s7 dictum that “theories of
security come from theories of insecurity.” We ana-
lyzed new vulnerability reports in Microsoft and
non-Microsoft products to see if they exposed new
classes of vulnerability, and if so, we looked for an
opportunity to introduce a new requirement or tool to
eliminate vulnerabilities of that class or a mitigation to
reduce their severity. The lesson of the Blaster vulner-
ability in Windows Server 2003 taught us to prefer giv-
ing developers tools over telling developers to look for
problems: Even the most diligent and dedicated devel-
oper could easily overlook an error when reviewing a
code base as large as Windows, Office, or SQL Server.

We took advantage of new security technologies
that could make the SDL more effective. For example,
as fuzz testing became a mature vulnerability hunting
technique, we added fuzz testing requirements (and
tools) to the SDL—for files and for network interfaces.

www.computer.org/security 29

Evolving Requirements and Tools
Experience with Windows Server 2003 and Windows
XP showed us that code-level mitigations were a worth-
while investment, and Microsoft continues to invest in
mitigations to this day. Engineers in the SWI team, usu-
ally collaborating with engineers in the Windows and
compiler groups, devised new approaches to mitigating
stack and heap overflow attacks and attacks that relied
on exception handling weaknesses to execute malicious
code, among others. When mitigations were accept-
able (effective, compatible with existing applications,
and had adequate performance), we made it mandatory
for product groups to implement them in new versions.
Some mitigations crossed compiler, analysis tools and
operating system—for example, mitigation and detec-
tion of heap corruption attacks. Advances in vulner-
ability research have sometimes enabled the defeat of
a mitigation—this happened in some scenarios with
the -GS compiler option—but our overall experience is
that mitigations have been effective at raising the cost
and reducing the effectiveness of attacks.

Beginning with the Windows security push, we
took the position that product features should only be
enabled by default if most users would need them, that
network ports should be blocked by default, and that
features (or products!) should not require privilege to
run. We built and mandated tools to enable product
groups and SWI team security advisors to confirm that
these requirements had been met.

We were acutely aware of the ways that product
groups who chose to implement encryption algorithms
themselves or to introduce new kinds of encryption
features could go badly wrong. The SDL specified
in detail what encryption algorithms were approved
and for what purposes. We eventually established the
“Crypto Board” composed of product group, Microsoft
Research, and SWI team encryption experts to review
and advise on new ways that products sought to use or
implement encryption.

Even before the Windows security push, the MSRC
team had faced the problem of vulnerabilities in
third-party components that products incorporated but
that were developed by other product groups, or outside
of Microsoft. We required each product to maintain a
list of components (we used the old Digital Equipment
term giblets) so that it could remediate vulnerabilities
when they were discovered. The current push for soft-
ware bills of material (SBOMs)8 reflects awareness of
this 20-year-old concern by industry and government.

In response to the clear problems with threat model-
ing, Shawn Hernan led the way in developing a struc-
tured process that told developers how to analyze a data
flow diagram for threats (potential vulnerabilities). We
documented Hernan’s approach in Chapter 9 of the

authors’ book9 on the SDL and built a tool that auto-
mated the threat model analysis and bookkeeping for
developers.10 The tool and process were first used at
scale on Windows 7 with good success. While threat
models were mandatory beginning with SDL Version
2.0, we did not mandate the tool: Development groups
that had the expertise to threat model successfully using
a whiteboard and Word document were free to continue
doing so. Even today, Microsoft does not mandate a sin-
gle threat modeling tool.

During the decade after the security push, several
new trends arose that changed the way software was
built, deployed, and used. Online services began to
supplement or supplant on-premises “boxed products,”
and, with the growth of online services, rapid or con-
tinuous development models replaced multiyear devel-
opment cycles. We made our first attempt at creating
a version of the SDL for agile development in 2005–
2006, and Bryan Sullivan created a successful model a
few years later.11 The key was to recognize that the SDL
specifies required developer activities but that when
they are performed can vary depending on the develop-
ment model. If developers are deploying to production
several times each day, their static analysis tool needs to
be lightweight enough to give them actionable feedback
before they deploy. The Microsoft development groups
that moved to agile found Bryan’s approach effective
and consistent with their desired approaches to devel-
opment and deployment.

We sought to ease the management and tracking
of the SDL both for the SWI team and for the product
groups. We created a tracking tool that enabled product
groups to register a new release, determine what SDL
requirements applied to their version, and then upload
tool outputs or enter manual attestations that demon-
strated that the product version met the requirements.
The tool started its life as a “hack” on a PC under a pro-
gram manager’s desk and its functionality was enhanced
over the years. Our long-term goal was to enable devel-
opment groups to manage their SDL work using their
workflow (bug tracking) systems rather than having
to work in a separate system dedicated to SDL compli-
ance. Today, most teams at Microsoft follow their SDL
requirements using tools like Azure DevOps, and the
results roll up to an overall company-wide process.

During the first ten years of the SDL, our task was
made easier by the fact that almost all Microsoft products
were developed in one of a small number of languages
(C, C++, C#) and used Microsoft development tools.
We created SDL requirements for products that ran on
the Macintosh, which represented a significant code
base and market. While some tools had to be ported by
the SDL team, other tools were available on the Mac and
their use was consistent with the intent of the SDL.

30 IEEE Security & Privacy March/April 2023

Sharing the SDL
We decided early in the life of the SDL that we would
be relatively public about what we were doing. We did
this both to build customer confidence in our commit-
ment to security and TwC and to encourage companies
who wrote code for Windows to address security so
that our customers would have a more secure environ-
ment—a customer whose Windows system is attacked
is not likely to distinguish between Microsoft code and
third-party applications.

The authors wrote a book9 on the SDL in late 2005,
basing the content on the then-current SDL Version 2.2.
We also held a workshop on secure development and
the SDL for original equipment manufacturers (OEMs)
who were to ship PCs loaded with Windows Vista. (We
had discovered that many OEMs shipped PCs with
the Windows file system configured so that all users
had full read-write access to every file—including the
operating system—undoing the carefully thought-out
default file protections that the Windows group had
designed.) We established an informal program to share
the SDL, including training, process guidance, and
some tools, with major independent software vendors
who expressed an interest—Adobe and Cisco were two
active participants who have acknowledged their partic-
ipation in that program and its value. We worked with
Microsoft Consulting Services (MCS) to create a con-
sulting practice that would help customers create their
own SDL processes and integrated the SDL into the
processes that MCS uses to create software for custom-
ers. And we eventually shared relatively complete ver-
sions of the full SDL (sanitized of internal references)12

In 2007, Microsoft and several other companies
that had created or were creating software security pro-
grams established SAFECode, a nonprofit organization
devoted to allowing its members to exchange insights
and ideas on creating, improving, and promoting scal-
able and effective software security programs. In the 15
years since SAFECode was formed, it has released guid-
ance documents and blogs on a variety of topics includ-
ing secure development processes, use of third-party
components, threat modeling, fuzz testing, and the
role of security champions in development groups.13
SAFECode members also share approaches to emerg-
ing problems to help the members improve the quality
and effectiveness of their software security programs.

Both SAFECode and Microsoft have worked with
governments to share approaches to software secu-
rity. In 2004, Microsoft initiated an effort to infuse
SDL concepts into the international Common Crite-
ria for Information Technology Security. In the end,
the complexity of evaluating products against SDL
requirements was too great for the Common Criteria
governments to accept.

More recently, SAFECode collaborated with the
National Institute of Standards and Technology (NIST)
and BSA, The Software Alliance on the creation of NIST’s
Secure Software Development Framework (SSDF), Spe-
cial Publication 800-218.14 The U.S. Government’s 2021
May Executive Order on Improving the Nation’s Cyber-
security (E.O. 14028)15 aligns closely with the SSDF and
the list of secure development requirements in Section 4
of the Executive Order (Enhancing Software Supply
Chain Security) will look very familiar to anyone who
has studied or worked with the SDL.

Lessons Learned
Twenty years after the Windows security push and
almost 19 years after the creation of the SDL, a few clear
lessons stand out. While development lifecycle and
deployment models have changed, new programming
languages have proliferated, and the use of third-party
and open source components has grown, these com-
mon threads are still important to any organization that
wants to deliver secure software to its users:

 ■ The product group is responsible for executing the
secure development process and delivering secure
software. The security team is responsible for giving
the product groups the training, tools, and processes
that enable them to deliver secure software success-
fully. If the security team attempts to “do security” for
the developers, they will always be too late and the
software that actually ships will never be secure.

 ■ The evidence of secure development is the code, the
bugs in the workflow system, the outputs of security
tools, the giblet database (SBOM), and the threat
models. All are artifacts of building secure software.
If a security team insists on being provided with com-
pliance documentation, they will inevitably be misled
by the distance between the actual evidence and the
documentation.

 ■ “Theories of security come from theories of insecu-
rity.” Root cause analysis of vulnerabilities, whether
found by an internal security team or external vulner-
ability researchers, is the key input to the creation and
updating of secure development process and tools.

 ■ Secure development is a quality process like modern
manufacturing and continuous improvement results
from root cause analysis and response to defects. Per-
fect software security is likely not achievable, and cer-
tainly not in viable commercial products. But secure
development processes and continuous improvement
have been shown to reduce vulnerability popula-
tions and raise the difficulty of finding and exploiting
vulnerabilities.16

 ■ Mitigations are an important aspect of software
security that complement the quest to build more

www.computer.org/security 31

secure software. They are worth exploring and
investing in.

Acknowledgment
The success of the Windows security push and its evo-
lution into the SDL were the result of hard work and
commitment to software security by a lot of people
over the last two decades. We are grateful to the mem-
bers of the Secure Windows Initiative team and its suc-
cessors for their work in creating and implementing the
security push and the SDL. Product team engineers
and executives demonstrated commitment to deliver-
ing secure software, willingness to learn and adopt new
tools and techniques, and provided valuable sugges-
tions and feedback. Microsoft customers encouraged
our efforts and independent and academic security
researchers created new techniques that we integrated
into the SDL as it evolved. We have mentioned the
names of a few key contributors in this paper, but we’ve
undoubtedly omitted some important names. We
thank you all.

The content of this article represents the perspective
of the authors and does not represent the position of
their organizations.

References
 1. M. Howard and S. Lipner, “Inside the windows secu-

rity push,” IEEE Security Privacy, vol. 1, no. 1, pp. 57–61,
Jan./Feb. 2003, doi: 10.1109/MSECP.2003.1176996.

 2. M. Howard and D. LeBlanc, Writing Secure Code. Red-
mond, WA, USA: Microsoft, 2001.

 3. B. Gates, “Bill gates: Trustworthy computing,” Wired, Jan.
17, 2002. Accessed: Dec. 19, 2022. [Online]. Available:
https://www.wired.com/2002/01/bill-gates-trustworthy
-computing/

 4. M. Howard. “Banned.” GitHub. Accessed: Dec. 1, 2022.
[Online]. Available: https://github.com/x509cert/
banned

 5. “NX bit.” Wikipedia. Accessed Dec. 19, 2022. [Online].
Available: https://en.wikipedia.org/wiki/NX_bit

 6. “Glossary of software security terms.” BSIMM. Accessed:
Dec. 19, 2022. [Online]. Available: https://www.bsimm.
com/about/glossary.html

 7. R. C. Proto. “Richard Proto.” Wikipedia. Accessed: Dec.
19, 2022. [Online]. Available: https://en.wikipedia.
org/wiki/Richard_Proto

 8. “Software bill of materials,” Cybersecurity and Infra-
structure Security Agency, Washington, DC, USA, 2022.
Accessed: Dec. 21, 2022. [Online]. Available: https://
www.cisa.gov/sbom

 9. M. Howard and S. Lipner, The Security Development Life-
cycle. Redmond, WA, USA: Microsoft, 2006.

 10. Microsoft Azure Product Documentation, “Microsoft
threat modeling tool,” Microsoft Corp., Redmond, WA,

USA, Aug. 2022. Accessed: Dec. 1, 2022. [Online].
Available: https://learn.microsoft.com/en-us/azure/
security/develop/threat-modeling-tool

 11. B. Sullivan, “Announcing SDL for agile development
methodologies,” Microsoft Corp., Redmond, WA, USA,
Nov. 10, 2009. Accessed: Dec. 20, 2022. [Online]. Available:
https://www.microsoft.com/en-us/security/blog/
2009/11/10/announcing-sdl-for-agile-development
-methodologies/

 12. SDL Team, “Microsoft security development lifecycle
(SDL) process guidance - Version 5.2,” Microsoft Corp.,
Redmond, WA, USA, May 23, 2012. Accessed: Dec. 20,
2022. [Online]. Available: https://www.microsoft.com/
en-us/download/details.aspx?id=29884

 13. SAFECode Home Page. (Nov. 6, 2022). SAFECode.
Accessed: Dec. 20, 2022. [Online]. Available: www.
safecode.org

 14. M. Souppaya, K. Scarfone, and D. Dodson, “Secure
software development framework (SSDF) version 1.1:
Recommendations for mitigating the risk of software vul-
nerabilities,” NIST, Gaithersburg, MD, USA, Feb. 2022.
Accessed: Dec. 20, 2022. [Online]. Available: https://
csrc.nist.gov/publications/detail/sp/800-218/final

 15. J. R. J. Biden, “Executive order on improving the Nation’s
cybersecurity,” White House, Washington, DC, USA,
May 12, 2021. Accessed: Dec. 20, 2022. [Online]. Available:
https://www.whitehouse.gov/briefing-room/presidential
-actions/2021/05/12/executive-order-on-improving
-the-nations-cybersecurity/

 16. M. Miller. BlueHat Israel 2019 - Matt Miller -Trends, Chal-
lenges, and Strategic Shifts. (Feb. 2019). [Online Video].
Accessed: Dec. 20, 2022. Available: https://www.youtube.
com/watch?v=PjbGojjnBZQ

Steve Lipner is the executive director of SAFECode,
Seattle, WA 98122 USA, an adjunct professor of
computer science at Carnegie Mellon University,
Pittsburgh, PA 15213 USA, and chair of the U.S. Gov-
ernment’s Information Security and Privacy Advi-
sory Board. His research interests include software
security assurance, other aspects of system security,
and the approaches that enable organizations to cre-
ate effective security programs and products. Lipner
holds an SM in civil engineering from the Massachu-
setts Institute of Technology. He was elected to the
National Academy of Engineering in 2017. Contact
him at lipner@outlook.com.

Michael Howard is a principal security program manager
in the Azure Data Platform team at Microsoft Corpo-
ration, Austin, TX 78613 USA. His research focuses
on streamlining secure software development prac-
tices and the use of artificial intelligence in security.
Contact him at mikehow@microsoft.com.

http://dx.doi.org/10.1109/MSECP.2003.1176996
https://www.wired.com/2002/01/bill-gates-trustworthy-computing
https://www.wired.com/2002/01/bill-gates-trustworthy-computing
https://github.com/x509cert/banned
https://github.com/x509cert/banned
https://en.wikipedia.org/wiki/NX_bit
https://www.bsimm.com/about/glossary.html
https://www.bsimm.com/about/glossary.html
https://en.wikipedia.org/wiki/Richard_Proto
https://en.wikipedia.org/wiki/Richard_Proto
https://www.cisa.gov/sbom
https://www.cisa.gov/sbom
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://www.microsoft.com/en-us/security/blog/2009/11/10/announcing-sdl-for-agile-development-methodologies/
https://www.microsoft.com/en-us/security/blog/2009/11/10/announcing-sdl-for-agile-development-methodologies/
https://www.microsoft.com/en-us/download/details.aspx?id=29884
https://www.microsoft.com/en-us/download/details.aspx?id=29884
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving
https://www.youtube.com/watch?v=PjbGojjnBZQ
https://www.youtube.com/watch?v=PjbGojjnBZQ
mailto:mikehow@microsoft.com

