
24 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

V
viewpoints

Privacy and Security
Security Assurance
How can customers tell they are getting it?

Developers used tools and code review
to search for vulnerabilities, changed
defaults to reduce attack surface, and
added mitigations that made it more
difficult to exploit any vulnerabilities
that might remain. This initial ap-
proach—the security push—reduced
the prevalence and severity of security
vulnerabilities in products that had
gone through security pushes. It also
motivated developers to build secure
software.

The Slammer and Blaster worms
of 2003 affected product versions
that had not yet gone through secu-
rity pushes and gave Microsoft clear
evidence that security needed to be an
integral part of its development pro-
cess and culture. In 2004, Microsoft in-
troduced SDL as a mandatory process
for software development. Those of
us who worked on the SDL knew secu-
rity must be built into products and the
best approach was to integrate secu-
rity into the development workflow. In
summary, the SDL required that threat
models be produced as a product was
being designed, that specific coding
requirements be met and static analy-
sis and attack surface analysis tools
be applied as the code was being writ-
ten, that mitigations be integrated into
software, and that security testing (for

S
E CURITY AS S URANCE HAS

been the most challenging
topic I have had to contend
with in my 45 years work-
ing on computer security.

While designing and building security
features for user identification and au-
thentication or for access control can
be challenging, the most difficult task
is assurance: making systems that can
resist attack. Assurance affects not
only security features but also any sys-
tem component that will respond to
untrusted input.

Assurance is achieved by integrat-
ing security into the process of design-
ing, building, and testing systems.
If security is well integrated into the
development process, the resulting
software will generally resist attack. In
this column, I summarize my experi-
ence building a process for security
assurance and how and why it works.
I also describe providing customers
with confidence a system achieves an
appropriate degree of assurance.

Creating a Process
While I started working on problems
of assurance in the early 1970s, my
perspective on assurance today is es-
pecially influenced by my 10 years of
experience as the director of the team

responsible for Microsoft’s Security
Development Lifecycle (SDL). The
story of Microsoft’s work to integrate
security assurance into development
has been told in the trade press and
professional papers.2,5,7 The company
stepped up its focus on security in late
2001 in response to its concerns about
the security of Microsoft products
and to customer feedback—much of
it heated—about the security vulner-
abilities exploited by Code Red and
Nimda worms.

It was clear the company’s security
challenges were not limited to secu-
rity features but encompassed any
component that dealt with potentially
untrusted input. For that reason, Mi-
crosoft stopped all development on
major products—Windows Server
2003 was the largest. This was a major
commitment—it involved thousands
of engineers, delayed the release of
products by months, and impacted
costs and revenues—but it was clear
that an error handling untrusted in-
put could occur anywhere.

Our team trained the entire develop-
ment staff on techniques we believed
would help improve products’ resis-
tance to attack, and required the devel-
opers to apply those techniques to the
code for which they were responsible.

DOI:10.1145/2822513 Steven B. Lipner

http://dx.doi.org/10.1145/2822513

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 25

viewpoints

V
I

M
A

G
E

 B
Y

 A
L

P
H

A
S

P
I

R
I

T

discovered—so they want a process that
incorporates continuous improvement.

So why do the SDL and similar pro-
cesses improve product security? I be-
lieve an effective process has to meet
three tests:

 ˲ It must be fundamentally sound. It
must incorporate measures that will
improve security if applied. Funda-
mental soundness implies continuous
improvement: as new classes of vul-
nerabilities or techniques for building
more secure software are discovered,
the process must be updated.

 ˲ It must be adapted to the develop-
ment organization. Individual devel-
opers must be trained and motivated
(security must be part of the culture), el-
ements of the process must be integrat-
ed into development, and development
tools must reflect the requirements of
the process. For example, if the process
says, “do static analysis,” the develop-
ment organization must select a static
analysis tool, “tune” it to their code
base and identify “must-fix” errors.

 ˲ It must affect the code. Threat mod-
els result in a set of work items that must
be addressed so the delivered code re-
sponds correctly to threats. Static analy-
sis tools or fuzzers find errors that must
be analyzed and fixed in the code.
The SDL meets all three tests but differ-

example, fuzz testing) be conducted as
part of product qualification.

While the initial Security Develop-
ment Lifecycle was released with little
in the way of supporting tools, Mi-
crosoft updated the process to make
it more effective and efficient. The
SDL team built and mandated tools
to support security assurance in de-
sign, development, and testing. We
treated product vulnerability reports
as feedback that told us whether we
needed to update the SDL or do a bet-
ter job of executing it. We introduced
a tracking system that automated
the task of ensuring product com-
ponents had met the applicable re-
quirements. The tools and tracking
help ensure the SDL is followed, and
provide a consistent mechanism for
engineers.

By 2005–2006, the customers who
had been providing heated feedback
realized the company was serious
about security and the SDL. Interac-
tions with chief security officers (CI-
SOs) became more cordial: in some
cases, they urged other software ven-
dors to adopt processes similar to the
SDL. Whether because of that urging
or because they had applied similar
logic to ours, during the mid-2000s a
number of other vendors developed

processes similar to the SDL and
adoption of such processes across the
industry has continued to grow.a

Is a Process Enough?
When customers ask about secure de-
velopment, they do so because they
need products that will resist attack.
Ideally a metric would enable custom-
ers to compare products without hav-
ing to delve into the way products were
built. Unfortunately, the quest for a
measure of product security has been
futile, and I expect it will continue to
be so. We can measure the number
and severity of reported product vul-
nerabilities, but when we do that, we
are measuring the talents and interests
of vulnerability researchers as well as
inherent product security. A product
that no one uses may have no reported
vulnerabilities, but be extremely vul-
nerable if attacked.

Customers understand that mea-
suring security is infeasible so they ask
about a developer’s process. They also
understand that vulnerabilities will oc-
cur—both because processes are not
perfect and because new attacks get

a For a non-exhaustive list of companies that
have adopted SDL-like processes, see http://
www.safecode.org.

26 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

viewpoints

argued that open source software was
inherently more secure than closed,
but faced with reality that argument
faded away.8 The recent spate of vul-
nerabilities in the open source OpenS-
SL package is one example: the Linux
Foundation’s Core Infrastructure Ini-
tiative is bringing developers and us-
ers of open source software together
with the aim of introducing secure de-
velopment practices—many similar to
the SDL—to widely used open source
software.4

What Next?
Security assurance is a challenge for de-
velopers and a necessity for customers.
Perfect assurance would be great, but
we do not have the tools or techniques
to achieve it, and I do not see any rea-
son we ever will. We can achieve practi-
cal assurance if we commit to practical
measures and apply them.

 ˲ Secure development processes
work if they reflect continuous improve-
ment and are followed by the people
who design, implement, and test code.

 ˲ Assessment of secure develop-
ment processes is feasible, but it will
take a lot of work and it must consider
impact on delivered code, not merely
process. ISO 27034 represents a way
forward here.

 ˲ Neither product liability nor open
source will serve as a “silver bullet” that
substitutes for secure development
processes that are rigorously applied
and continuously improved.

References
1. Denning, D.E. Toward more secure software. Commun.

ACM 58, 4 (Apr. 2015), 24–26.
2. Howard, M. and Lipner, S.B. The Security Development

Lifecycle. Microsoft Press, 2006.
3. ISO/IEC, ISO/IEC 27034-1:2011. Information

technology—Security techniques—Application
security—Part 1: Overview and concepts; http://www.
iso.org/iso/catalogue_detail.htm?csnumber=44378.

4. Linux Foundation. Core Infrastructure Initiative site;
https://www.coreinfrastructure.org/.

5. Lipner, S.B. The trustworthy computing security
development lifecycle. In Proceedings of the
Twentieth Annual Computer Security Applications
Conference (Tucson, AZ, 2004).

6. Lipner, S.B., Jaeger, T., and Zurko, M.E. Lessons from
VAX SVS for high assurance VM systems. IEEE
Security and Privacy (Nov.–Dec. 2012).

7. Microsoft Corporation. Life in the Digital Crosshairs,
2014; http://bit.ly/1NnOoS4.

8. Panel: Security and Source Code Access: Issues and
Realities. In Proceedings of the IEEE Symposium on
Security and Privacy, 2000.

Steven B. Lipner (lipner@outlook.com) retired in 2015
as Partner Director of Software Security, Trustworthy
Computing, at Microsoft Corporation. He continues to
consult with and advise organizations on computer
security and assurance.

Copyright held by author.

entiates itself by meeting the third. The
industry has many processes—CMMi
is one example—that stop with docu-
mentation. If a process does not actu-
ally affect code, it is just paper.

How Can Customers Tell?
If customers accept the proposition
that an SDL-like process is effective,
they are still left with a question wheth-
er their suppliers are actually imple-
menting such a process in a way that af-
fects delivered code. A supplier should
be able to describe their secure devel-
opment process, and in particular how
the process affects code. In practical
terms, this means describing not just
process generalities, but what specific
tools are used, what errors are “must
fix,” and how the results of security
analysis are managed in the supplier’s
work item management system.

Some customers have documented
their expectations for their suppliers’
secure development processes, and put
“teeth” into those expectations by hav-
ing in-depth interviews with suppliers’
secure development staffs.b This is a
good approach although it has scaling
problems: suppliers’ secure develop-
ment staffs will not scale to participate
in interviews with every customer and
not every customer has the resources
to interview every supplier. The cus-
tomer’s interviewers must have hard-
to-find expertise to evaluate what they
are hearing and to consistently assess
processes across a range of suppliers.
But the experience of such interviews
appears beneficial—it informs cus-
tomers and provides useful feedback
to suppliers.

A new ISO standard—ISO 27034-
1: Information technology—Security
techniques—Application security—
recognizes the importance of devel-
oper process and of ensuring delivered
code reflects the requirements of the
process.3 The standard is still evolving,
but I believe it will provide a solid basis
for consistently assessing suppliers’
secure development processes. The fi-
nal standard is planned to address all
three of the tests listed previously, in-

b For one example, see Third Party Software
Working Group, Appropriate Software Secu-
rity Control Types for Third Party Service and
Product Providers, Financial Services Infor-
mation Sharing and Analysis Center; http://
bit.ly/1Fw6jhs.

cluding the link between process and
delivered code. Some customers have
expressed an interest in using the stan-
dard to drive procurement decisions,
supplanting vendor interviews.

Some Things That Don’t Help
When I started working in computer
security, I expected we would formally
verify that a secure system correspond-
ed to a mathematical model, and that
the system’s security was correct down
to the source code; this approach
failed. Formal verification was not able
to cope with systems large enough to
be useful and no customers wanted the
systems that were simplified to enable
that approach to be applied.6

Earlier this year, Dorothy Denning
wrote a Communications Privacy and
Security column advocating legal li-
ability for developers who released
products vulnerable to attack.1 Unfor-
tunately, the list of such developers is
“all of them.” If a liability regime were
put in place, I expect it would result in
a lot of lawsuits against software de-
velopers and slow software innovation
as developers attempted legally rather
than technically defensive coding. If
the goal is to create software that is
more secure and usable by customers,
encouraging the use of best practices
that address threats is a more rational
approach than liability.

Denning’s proposal includes an
“out” for developers who release the
source code for their products. That
“out” might incentivize developers to
release their source code and change
some business practices, but I do not
believe it would improve assurance.
Fifteen years ago, some researchers

Perfect assurance
would be great, but
we do not have the
tools or techniques
to achieve it, and
I do not see any
reason we ever will.

