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ABSTRACT

The Honeywell Multics computer system has been proposed for
possible use in a multilevel secuity enviromnment at the Air Force
Data Service Center. This report presents an overview of the security
aspects of the Multics operating system design, and the results of
an ESD/MITRE security evaluation of Multics for the obsolete Honeywell
645 processor. The results of the 645 penetration and design review
are used to project the probable security strengths and weaknesses
of the current Honeywell 6180 Multics. While the uge of Multics in an
open environment is not recommended, a set of actions that can support
the use of Multics in a controlled muitilevel environment is identified
and recommended,
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SECTION 1

INTRODUCTION

This report presents the results of an ESD/MITRE assessment of
the Honeywell Multies computing system as a candidate for use in a
controlled multilevel security environment at the Air Force Data
Services Center (AFDSC). The study was conducted in the period from
July 1972 to October 1973. The major period of activity was October
1972 to March 1973.

Other volumes published separately present specific results of
examining in detail the security and utility of Multies; this report
attempts to tie those results together and present overall
conclusions regarding AFDSC's possible use of Multics. Because the
major motivation for examining Multics was its potential for secure
computing, most of this report deals with the current state and
future prospects of computer security in the Multies environment.
The remaining paragraphs of this section outline the background of
the ESD/MITRE study, summarize key findings and conclusions, and
present an overview of the remainder of the report.

BACKGROUND

The Air Force Data Services Center operates a general-purpose
computer utility in the Fentagon, serving a number of Air Force and
DoD agencies with several computers, principally two dual-processor
Honeywell 635 systems. The diversity of user requirements for
classified and unclassified processing, and the diversity of user
locations requiring on-line access led AFDSC in 1970 to request that
Air Force Systems Command develop a method of operating the 635
computers in a multilevel secure mode. The requirement for secure
operation at AFD3SC was expressed by Development Directive 79 from
Headquarters USAF and pursued under AFSC Project 6917.

An ESD/MITRE study conducted under Project 6917 in 1970
determined that providing a multilevel security mode would require,
at minimum, a complete redesign and reimplementation of the GCOS
operating system for the 635. More important, the study held out
little hope for the achievement of security in any operating system
for the 635, no matter how extensively modified. Subsequent
examinations of 635 (and follow-on HIS 6000 and Level 66) "secure
operating systems" have tended to confirm this judgement. Thus the
AFDSC requirement for secure multilevel operation expressed by
Development Directive 79 remained unsatisfied.
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In 1972, the Office of the Assistant Secretary of Defense
(Systems Analysis) conducted a study of alternative computer systems
that might provide it with needed time-sharing services. AFDSC
suggested to OSD(SA) that an AFDSC-operated Multics sy.tem might
meet the OSD(SA) requirement. However, a problem was again
presented by security: Much of the 0SD{SA) workload is classified
top secret while most AFDSC users are cleared and most AFDSC work is
classified only at the secret level. The Multics system is too
large and costly to be dedicated to the 0SD{SA) workload; thus some
way must be found to serve the secret-cleared AFDSC users as well as
the top secret 0SD(SA) demand on the same machine. An ESD
preliminary study suggested that Multics might provide the required
security for a controlled environment of secret and top secret-
cleared users. Based on the preliminary study and other
considerations, AFDSC was directed to acquire the Multics system and
operate it in support of OSD{(SA) as well as its own users.

This ESD/MITRE assessment of Multics is intended to provide
AFDSC with information on the advisability and limitations of a
two-level Multics system in a secret-top secret controlled
environment. At the same time, the study considers the possible
future use of Multies in a more general multilevel environment to
satisfy AFDSC requirements. As such it attempts to point the way
toward satisfying the total need expressed in Development Directive
79.

Preliminary results of this study indicated that a Multies
computer could be used in a controlled multilevel environmment. On
the basis of these results, a Request for Proposal (RFP) to
Honeywell was prepared and issued in late 1972 and early 1973.
Numerous results of this study are reflected in the RFP, especially
in those portions dealing with required security measures.

SUMMARY OF FINDINGS

This study effort has included an exhaustive examination of _
available Multics documentation--primarily that available in the
technical literature plus user-level manuals. A more limited
examination addressed the system programs and system documentation
of the existing (HIS 645) Multics computer. Several penetration
efforts were directed at the 645 Multies. Only very limited
attention has been directed at the follow-on hardware (HIS 6180 and
Level 68) and software that would actually be installed at AFDSC,
for neither was available during the study period.

Beardsley commented in [1] that "Graduate students have always
been the best test of system security...Multics has, in fact,
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probably been the object of more penetration attempts than all other
time-<taring facilities combired". However, this rerort supports
the alternative puint of view tlhat a deliberate, planned penetration
attempt is a far more severe test. The efforts at penetrating 645
Multics given ordinary user's access were completely successful.
Given this fact, it is unwise to operate a 645 Multics system or its
immediate successor Level 68 Multies in an "open" multilevel
security environment where it is subject to programmed attacks by
potentially hostile users. On the other hand, operation in a
controlled multilevel environment with users cleared for either
secret or top secret information and user areas protected to top
secret is an acceptable option. In the latter controlled
environment, the system hardware and software are protecting mainly
against accidental disclosures and, with modifications outlined
below in the areas of explicit classification and input-output, are
quite adequate.

In a somewhat longer time frame, Multics offers the basis for a
system that can provide effective security in an open environment.
The HIS Level 68 hardware includes those features [2] that appear to
be necessary to support a provably correct "security kernel" [3]
that is capable of assuring protection of information from
unauthorized access or modification. The basic Multies software
concept provides for a uniform virtual machine environment and for
complete checking of programs' attempts to access information. Both
features provide significant aids to system security. Thus it is
reasonable to expect that a secure system based on Multies could be
achieved by restructuring in a known way rather than a never-ending
search for bugs and errors. Such a system would be of significant
utility to AFDSC and throughout DoD, for a Multics computer can
support many existing programs written for the HIS 635 and 6000
series processors and the GCOS operating system. A secure system
based on Multics hardware and a security "kernel" would have a
probability of security failure corresponding to the (low)
probability of failure of a security related hardware component. In
contrast, security failures in systems with software security flaws,
such as the HIS 635, can be produced repeatedly by a hostile agent.

A brief examination of the utility of Multies revealed no
unacceptable penalties for system use or security. The Multics
design emphasized overall user service rather than maximum batch
throughput. Still, the 645 Multics system compares reasonably in
throughput with other contemporary computers; the Level 68 Multics
processor has greater basic speed and several new hardware features,
so its performance should be quite competitive. The use of hardware
for most security checks and the provision of a segmented virtual
memory reduce the performance penalties for security to an
insignificant level [4].



The development cbjectives for Multics included the provision
of a flexible environment in which user-oriented software packages
could be built, but did not cail for the provision of csuch packages
as part of the basic system. An examination of the human interface
manifest by the Multics commands, editors, computer-aided
instruction package, and manuals shows the present system to have
been written "by and for programmers". While Multics presents the
non-programmer user a face no worse (except for documentation) than
those of other contemporary systems, it is not any better. However
Multics does meet its objective and have the potential to provide a
significantly improved human interface, given thought, commitment,
and effort.

OVERVIEW OF THE REPORT

The following six sections present a complete picture of the
ESD/MITRE evaluation of Multics, especially in the realm of
security. Details of specific evaluations, including the
penetrations of 645 Multics, are reported in separate volumes.

Section 2 below describes the scope of conaideration of
Multics--what aspects of the system were examined and to what level
of detail. Section 3 presents a summary of the Multics access
control design. Section 4 describes ESD/MITRE experiences in
evaluating the security of the existing 645 Multies. Section 5,
somewhat speculative in nature, considers the prospects for security
in an initial 6180 Multics delivered to AFDSC. Section 6, based in
part on ongoing ESD/MITRE development efforts, discusses the mid-
term prospects for a secure system based on Level 68 or 6180
Multies. The final section presents the recommendations of the
ESD/MITRE evaluation of Multics.



SECTION 2

SCCPE QF THE EVALUATION

INTRODUCTION

This section describes the scope of consideration of Multics by
the ESD/MITRE evaluation group--what aspects of the system were
examined, to what depth, and from what sources. During the period
of the study, Multics evolved from a prototype system operated at
four sites on hand-modified second generation hardware to an
announced Honeywell product supported by third-generation hardware.
As the study was completed, the evolution was not complete, and the
depth of documentation of and experience with the Multics delivered
to AFDSC was rather uneven. The following paragraphs describe the
scope of consideration of system design, system implementation (the
vulnerability analysis or penetration), development prospects, and
system utility.

SECURITY SYSTEM DESIGN

The basic design of the Multics hardware-software gystem and
its access controls is accurately described in a number of papers
published in technical journals and proceedings between 1965 and the
present. These papers formed the basis for the evaluation of the
Multies security and access control design. At a more detailed
level, the security system design is reflected in the system
descriptions included in the Multics Programmer's Manual. An
examination of papers and manuals led to the conclusion that input-
output to demountable storage media and handling the military system
of classifications and special access categories would be special
problems in an initial secure Multics system. Accordingly, special
attention was paid to these two areas. A related document [5]
discusses the problems of demountable media input-output, while.
considerations of classification and special-access category form a
major part.of the security system specifications included in the RFP
issued to Honeywell.

SECURITY SYSTEM IMPLEMENTATION

The basic reference on the implementation of the Multics
security controls is the Multics system itself--the source listings

of the operating system modules, the Multics System Programmer's
Supplement and the hardware manual deseribing the HIS 645 processor.
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Given these references, the ESD/MITRE group charged with evaluating
the security of Multics identified a number of potential
vulnerabilities and constructed penetration progrars to exploit
them. While the identification of wvulnerabilities was aided by the
presence on the evaluation team of two individuals familiar with
Multics, their presence made the penetrations possible with
extremely low effort, rather than making the difference between
success and fajlure of the penetration efforts. The familiarity
with Multies required to effect penetration was no greater than that
required of any system programmer working in an installation that
uses Multics. Specific points of attack included the HIS 645
hardware, the operating system software, the maintenance procedures
and security "features". The level of effort expended on the
penetrations (about two man-months) was low in comparison with that
expended by other contemporary "penetration teams".

DEVELOPMENT PROSPECTS

During 1972, ESD sponsored a Computer Security Technology
Planning Study Panel [3] composed of experts in secure computing
drawn from government, industry, and the academic community. The
efforts of this panel, and subsequent ESD-sponsored efforts to
expand on and exploit its recommendations, have led to the
conclusion that the HIS Level 68 offers a sound basis for the
development of a secure computer system. While that conclusion is a
result of a major effort, the effort is aimed at developing a
prototype secure computer system, rather than at evaluating Multics
for AFDSC,

SYSTEM UTILITY

The assessment of system performance is built on comparative
performance data assembled by a previous MITRE project. This
project involved executing the scientific benchmark job (Job 14) of
the WWMCCS benchmark test series on a number of computers including
the IBM 370/155 and 360/50, and the HIS 635, 6050 and 6070. For the
Multies performance assessment, the benchmark program was converted
to Multics Fortran for execution on the HIS 645 and 6180. The
results of the performance assessment are fully documented in a
separate volume [6].

The evaluation of the Multics human interface was focused on an
examination of the TICS computer-aided instruction package proposed
as a training tool for AFDSC security and user personnel. The
examination of TICS involved developing a small tutorial to teach
secretaries the use of the qedx editor as a tool for document
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preparation. Sufficient experience was gained to support the
observations that some useful Multics commands and subsystems were
written more [or their programmer authors than for outsiders, and
that the interface the commands and subsystems present to a user is
not always consistent, mnemonie, or understandable [7]. The
documentation in many cases aggravates this problem by being more of
a specification or reference manual than a user's guide. Honeywell
is aware of this problem and is pursuing an effort to upgrade the
Multics user documentation in conjunction with their efforts to make
the Level 68 a commercial product.



SECTION 3

THE MULTICS ACCESS CONTROL DESIGN

INTRODUCTION

This section deseribes the design of Multics with emphasis on
the access controls--those parts of the system that control what a
user {or his program) may read, write, or execute. The purpose of
this section is to give the reader sufficient background to
understand why the basic design of Multics is considered sound from
an access control standpoint, and what areas of the design include
points of potential risk or require future development. The
deseription is not intended to be complete or definitive, for
numerous documents in the literature [8] [9] [10] [11] [12] detail
the design of Multies.

The first and largest of the subsections below describes the
Multics virtual memory-~the major element of the access contrel
environment. A second shorter subsection discusses the access
control implications of the Multics input/output system. A brief
conclusion summarizes the security strengths and weaknesses of the
Multics design.

THE MULTICS VIRTUAL MEMORY

The major unique feature of the Multics design is its provision
to the programmer of a segmented virtual memory. This subsection
discusses in turn the basic properties of the segmented virtual
memory, the interface between user and supervisor programs (or more
generally between programs of lesser and greater privilege), and the
underlying memcory management design (paging) that supports the
virtual memory.

Segmentation

4 ts. Directori { the File Syst

Each user active on Multies is normally associated with his own
"yirtual processor" that executes programs and accesses information
on his behalf. A conventional processor reads or writes data and
executes instructions only in some (real or virtual) primary memory;
the data or programs permanently or temporarily held in secondary
storage files must be explicitly read to primary memory on request
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of the user's program before the processor can operate on them
(Figure 1a). 1In contrast, the Multics virtual processor operates
directly on informztion in the file syster (Figure 1b). The
files--referred to as gegments--being processed retain their
identity instead of being moved into a single amorphous real or
virtual "core". This distinction between the Multiecs and
conventional processors lies at the heart of the security
implications of the Multics design.

The Multics file system is organized logically as a single tree
of segments. Data and programs may only appear in segments that are
leaves (at the bottom) of the tree. Other segments are used as
directories and contain information about the names, physical
locations, and access restrictions of segments lower in the tree.

To designate a specific segment, a Multics user or process names,
with the aid of conventions and default values, every directory in
order from the root of the tree to the desired segment. For
example, segment "slow" in figure 2 is designated by:

>udd>Druid>Mi>sbl>gored-ox>slow.
(The name Root is implied before the first >.)

Potentially (subject to access restrictions) any segment in the
file system may appear in the address space of any user's virtual
processor. The operation of the Multics segment management software
requires that if a given segment is to appear in a virtual
processor's address space, all directory segments superior to it in
the direct path to the root of the tree must also appear in the
address space (Figure 2). Both security and correctness of
operation require that users' programs be prevented from operating
directly on directory segments. This restriction is enforced by the
mechanisms (discussed in the next subsection) that distinguish user
programs and data from those of the supervisor in a virtual
processor's address space. Users or their programs appeal to the
supervisor to request operations that involve access or
modificationa to directories.

A given directory segment (such as gored-ox in figure 2)
contains one directory entry or branch for each segment directly
beneath it in the tree. (Thus gored-ox would contain four
branches--for elephantl, elephant2, slow, and better). Each branch
identifies every user who may access the corresponding (data,
program, or directory) segment, and the types of access that are
allowed for each user. The access types for program or data

segments are read, write, and execute, and each has the usual
meaning. If a branch specifies a segment that is a directory lower
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in the file system tree, the access types in the branch define
users' rights to perform operations on the branches of the lower
directory. The access types for directory segments are status,
allowing a user to list the segment names, sizes and access rights
{(ete.) specified by a directory's branches; modify, allowing a user
to change the branches in a directory so as to change access rights
or delete segments subordinate to the directory; and append,
allowing a user to add new branches (and subordinate segments) to a
directory. Different users may have different access rights to a
given segment--one user might be able to read or write a data
segment and a second only to read it. Similarly, one user might
have status and modify access to a directory segment, a second might
have only status access, and a third might have no access at all.

The operation of the directory tree and segment access controls
may be illustrated by an example using figure 2. Suppose that a
user, say Burke, has no access at all to directories sbl or gored-
ox, or to programs slow or better, but does have modify access to
directory Mi. Then if he wishes to access slow and better, Burke
can alter the branch in Mi that specifies directory sbl, and give
himself modify access to sbl. Similarly, he can then medify the
branch in sbl that specifies gored-ox and give himself modify access
to gored-ox. With this access, he can give himself execute access
to slow and better by modifying their branches in gored-ox. Thus a
user with modify access to a high-level directory can force access
to any lower segment if he wishes. (For this reason, the granting
of modify access to high-level directories in Multics must be
subject to administrative controls.)

The discussion of access authorizations aboye stated that each
branch in a directory identifies every user who may access the
segment corresponding to the branch and the modes of access that
each user is allowed. The access control list in the branch and the
identification of Multics users are organized to provide
administrative simpliecity and to prevent the overhead of very long
liats of authorized users. Each Multics user is assigned to one or
more projects for administrative purposes. When a user logs in, his
virtual processor is identified by his name, the project under which
he logged in, and a cone-letter (process) identifier. Access control
lists then specify combinations of user, preoject, and process
identities. Thus user Lipner might be able to access directory Mi
in status, modify, or append mocdes, if he is logged in under project
Druid with process identity a (Lipner.Druid.a). The conventions for
access control list entries include "don't care" specifications that
allow access by a class of users. For example, any user on project
Druid might have status access to Mi with any process (®.Druid.%).
The order in which access control lists are checked is intended to
insure that users will be given the proper access. In the examples
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above, Lipner.Druid.a will be found before *.Druid.®*, and Lipner's
virtual processor will be given full access (status, modify, append)
to Mi.

Yirtual Processor Operations

The initial paragraphs of this subsection discussed the direct
addressing of segments in the file system by the Multics virtual
processors. Subsequently the organization of the file sysatem and
its access controls were deseribed. The remaining paragraphs
attempt to establish the relationship among the virtual processors,
hardware processors, and file system. The concluding paragraph of
this subsection discusses the security implications of the Multiecs
segmented memory.

The Multics processor includes hardware that supports the
Multics segmented memory. Every address specified by a Multics
program is a "two-dimensional"™ address that specifies a segment and
a word within the segment. While the discussion above considered
named segments within the file system, the processor hardware can
only interpret segment numbers. A segment number specifies a
displacement in a table (the descriptor segment) that contains one
descriptor for each segment in the processor's address space. The
descriptor for a given segment contains much the same information as
the directory branch for that segment: 1location, size, and access
rights. When a program operating on a Multics processor specifies
an address (a segment number and word number) the processor uses the
segment number as an index to the descriptor segment and finds the
segment's location and size, and the access rights of the virtual
processor in control of the hardware processor. If the word
specified is within the segment (determined by its size) and the
access requested is consistent with the virtual processor's access
rights, the hardware allows the word to be read, written, or
executed as an instruction. If one of the conditions menticned is
not met, the processor refuses the access and immediately transfers
(faults) to an appropriate supervisor routine.

As its name implies, the descriptor segment is itself a Multics
segment, but one that can only be operated on by a virtual processor
that is executing a superviscor routine. Each user's virtual
processor has its own descriptor segment. The descriptor segment
for the virtual processor in control of the hardware processor at a
given time is addressed by a hardware register called the descriptor
bage register or DBR (figure 3). Thus multiprogramming (switching
control of the hardware processor from one virtual processor to
another) involves only reloading the DBR. The use of a separate
descriptor segment for each virtual processor provides the virtual

13
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processor with access to only the information that would be
available to its user if he were executing his program on a
dedicated mzchine.

The descriptor for a segment contains information that is
available in the directory branch that identifies the segment.
Making a segment directly addressable to a virtual processor, then,
requires copying information from the branch for the segment into a
descriptor. This operation is called paking a segment known to a
processg (virtual processor in execution) or simply making known.
When information is copied from the branch to the deseriptor,
certain additional information is placed in a known segment table
(KST) entry corresponding to the descriptor. While information in
the descriptor allows the hardware processor to find the segment
given its number, information in the KST allows a program running on
the virtual processcor to find the branch information for the segment
(such as its name) given the segment number. The KST entry, like
the descriptor, is created by the Multics supervisor when a segment
must be accessed by the virtual processor for the first time.

An important aspect of Multics, and cone consistent with the
discussion of direct addressing of files, is the fact that segment
numbers are only a shorthand provided for the convenience of the
hardware processor. Commands and programs in Multics use the names
of segments in the file system. A set of system linkage conventions
provides for the automatic making known of a segment, and the
arbitrary assignment of a segment number when the segment is first
accessed by a given virtual processor. The program segments created
by the Multics language processors follow these conventions, so many
Multics users and programmers need never be aware of the mapping
from segment name to segment number. The assignment of segment
number to segment is completely arbitrary: a given segment may be
addressed by a user's virtual processor with one number on one day,
and with a different number when the user logs in again (and thus
has a "new" virtual processor) the next day. Similarly, two users’
virtual processors that are sharing the Multics system by
multiprogramming can address the same segment at the same time using
two different segment numbers (Figure 4).

The management of shared segments in Multics deserves explicit
mention at this point. In a more conventional computer system, if
two multiprogrammed processes require simultaneous access to a file,
each reads it into "core" (real or virtual) and operates on it as
necessary. In Multies, each process is given a deseriptor for the
segment and accesses it "in place" in the file system. This concept
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of sharing results in significant efficiency in the use of oft-
shared programs =znd data baces.l Since each process has a separate
descriptor, it may have distinct access rights to the segment.

Thus, in figure 4, process 1 might be able to read and write its
segment n, while process 2 might only be able to read its segment m,
even though both numbers refer to the same segment.

The discussions abgve have addressed the operation of virtual
processors without regard to the distinction between user and
supervisor functions. While there are numerous operations that can
be performed by the supervisor but not by a user's program, the
supervisor, like a user program, operates as part of the user's
process and within the segmented environment. Thus when a user
program requires a supervisor service, it invokes a supervisor
routine. The latter may have more power than a user program (for
example, to write the descriptor segment) but is still bound by the
user's access rights to segments accessible to the virtual
processor. For example, if the user is denied access to segment
slow (Figure 2), then the user's virtual processor has no deseriptor
for slow, and the supervisor, like a user program, has no way to
address slow. There is simply no way for the virtual proceasor to
express the address of slow. If the virtual processor wishes to
access slow, it must appeal to the "make known™ routine in the
supervisor. This routine, on discovering that the user has no
access in the access control list for slow, will deny the request
whether it comes from a user or supervisor program. This situation
is in contrast to those of more conventional systems in which the
supervisor has access to the computer's entire address space, and
can potentially be tricked into addressing any information for a
user.

Summary of Segmentation

In summary, the use of segmentation in Multics has the effects

(1) Reducing and controlling the power of the superv1sor {the
"principle of least privilege");

(2) Enforcing explicit access controls to each file in the
system for each user; and

¥ Of course, sharing does not eliminate the need for -processes to
avoid inconsistency if they attempt to update the same data base.
Multics provides the usual locking mechanisms which may be used as
agreed by processes wishing to achieve harmonious cooperation.
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(3) Providing a uniform environment for both user and
supervisor routines that encompasses the normal functions
of primary and s.condary storage management systems.

These three effects result in a relatively simple and uniform access
control environment for Multies, and one in which security-related
superviscr programs can be identified and reviewed.

; ction Ri

The paragraphs above made frequent reference to the mechanisms
that distinguish between user and supervisor procedures, or more
generally, between procedures of lesser and greater privilege being
executed by a virtual processor. These mechanisms in Multics are
referred to by the name protection rings, a name drawn from a
graphical representation that has been used to describe their
operation. The following subsections present an overview of the
Multies ring mechanisms, then describe their operations with respect
to data segments, procedure segments, and directory segments.2

. . £ Rj

At any instant, the processor on which a Multics process is
executing has associated with it a domain or pring number. Before it
accesses any word of any segment on the process' behalf, the Multics
processor compares its ring number with a set of three rineg bracket
numbers in the descriptor for the segment. The relationship among
ring number, ring brackets, access modes recorded in the desecriptor,
and access mode requested determines whether the access will be
allowed or refused. Routines with different levels of privilege
(for example, supervisor and user routines) execute within the
process, but with ring number and ring brackets set so that
information receives appropriate protection. To take an example
from the discussions above, a process may write in its own
descriptor segment, but only when the processor ring number is set
to zero. As a process may only obtain control of the processor "in
ring zero" (the most privileged ring) by entering a supervisor
routine in a controlled way, user programs are prevented from
altering the descriptor segment.

The exact interpretation of the ring brackets for a segment
depends, as mentioned above, on whether the segment contains data,

2 4 complete description of the Multics protection ring mechanism is
beyond the scope of this report. See [11].
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procedure code, or a directory. The following subsections discuss
cach of these cases in turn.

Ringg and Data Segments

For a data segment, the two ring brackets of interest are the
read bracket and the write bracket. If a process is allowed read
access to a segment, it may effect that access while executing in
rings numbered from zero to the number specified in the segment's
read bracket. Thus the read bracket for a sensitive supervisor data
base might be zero (accessible only to the Multies operating system)

while that for a globally useful data base would be seven (the
highest ring number).

The write bracket for a segment identifies the highest ring in
which a process may be executing if it is successfully to attempt to
write in the segment. 1In order for a processor to write in a
segment, the processor ring number must lie between zerc and the
segment's write bracket and the process' descriptor for the segment
must indicate that write is an allowed access mode. The provision
of separate read and write brackets and access mode bits in the
descriptor allows flexibility in the granting of access to a
segment. A process might be allowed to read a segment in rings zero
through seven and to write it only in (supervisor) rings zerc and
one, For this case, the read and write access bits would be set,
the read bracket would be seven and the write bracket one. Since
the descriptors by which segments are accessed are "per-process"
(although the ring bracket values are not), a second process might
be granted only read access in rings zerc through seven for the same
segment. For this process, only the read access bit would be set,
while the read and write brackets would be seven and one as before.

Rings and Procedure Segments

The ring brackets for a procedure segment govern the setting of
the processor ring number while the procedure is in execution. In
addition, the procedure ring brackets determine whether the
procedure can be invoked while the processor is executing in a given

ring. Three restrictions regarding a procedure segment are imposed
by the hardware ring mechanisms:

(1) The highest ring in which a procedure can execute (be the
target of a successful call or branch instruction) is limited
so that a non-privileged routine cannot simply branch to a
sensitive one at an arbitrary point;

(2} The lowest numbered ring in which a procedure may execute
is limited so that a non-privileged routine may not obtain
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control of the processor in a privileged (low-numbered) ring;
and

(3) The ability of any routine in a higher-numbered ring to
invoke in a controlled way a routine that executes in a
lower-numbered ring is provided so that (for example) a user
program can request specific services of a supervisor program.

All three ring brackets in the descriptor are used to implement
the restrictions outlined above for any segment whose execute access
bit is on. The read bracket serves as a read-execute bracket and
specifies the highest ring in which a procedure segment may execute.
The write bracket specifies both the lowest ring in which a segment
may execute and, if the write access bit in the descriptor is on,
the highest ring in which a segment may be written. (This mechanism
assures that there is only a single ring in which an impure
procedure segment may be both written and executed. Were this
reatriction not imposed, a program could alter a procedure segment
while executing in a high ring and plant in it code to execute later
in a low ring (thus compromising the low ring). The third ring
bracket is the gate extension and is used to allow controlled entry
to a lower-numbered ring. A process in a ring whose number is less
than or equal to a segment's gate extension may call on the segment,
but only at predefined gate entry points. Gate entry points (or
Jjust gates) may occupy the first locations in a procedure segment;
the number of gates is specified by the ¢all limiter field in the
segment's descriptor. When a procedure segment is entered at a
gate, the processor's ring number changes to the number in the
segment's read-execute bracket.

The gate mechanism is used by Multics user programs to invoke
supervisor procedures. Each supervisor procedure has a series of
gate entry points that correspond to that procedure's distinect
functions. This mechanism, in contrast to the usual "supervisor
call" allows the ¢aller of a supervisor procedure to do (in a
controlled way) the selection of a supervisor routine to perform a
desired function. The gate extension allows a (user) program
executing in ring four 3 to call on a supervisor program that must
execute in ring zero. To¢ take a specific example, the deseriptor
for a pure procedure supervisor segment readable by other supervisor

Multics historically allots rings zero through three to supervisor
and supervisor support routines; thus user programs, by convention,
execute in rings four or higher.
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segments with five gates accessible by user programs (executing in
rings 4 or higher) would contain the following informetion:

Read access bit: on
Write access bit: off
Execute access bit: on
Read-execute bracket: ©
Write bracket: O

Gate extension: Y4 or more
Call limiter: 5

User programs could only enter such a procedure at its five gates,
each of which would (presumably) check to determine the legality of
the service requested before performing it. Supervisor routines, on
the other hand, could directly call internal entry points to the
procedure if necessary since the processor would be in ring zero
before entering the procedure in question.

The ring brackets and call limiter prevent less privileged
routines from directly invoking more privileged ones in an
uncontrolled way. However there is still the possibility of a less
privileged routine passing as a parameter an address in a lower
numbered ring and tricking a more privileged routine into using that
address to write into a location that it (the privileged routine)
can access but the calling routine cannot. This possibility is
precluded in the Multics processor by associating ring numbers with
each address formation register and with the stacks used for
temporary storage and argument lists. The exact ring mechanism used
in address formation and argument passing is detailed in [11]. The
ring validation of arguments eliminates the "game of wits" that
designers of most operating systems have been forced to play in
order to eliminate the trickery mentioned above. No matter when an
address supplied to the Multics supervisor is modified by a calling
procedure, the calling procedure's ring number will be associated
with the modified address, and prevent the supervisor from being
tricked.

The Multics ring hardware would be of little use if the
operating system allowed any user to construct a procedure segment
with read-execute bracket of zero and gate extension of four--in
effect, his own gate into ring zero. 1In fact, the supervisor
routine that establishes ring brackets for a segment in the file
system interprets a "validation level" computed from the current
ring of execution of the process that creates the segment and allows
the setting of ring brackets no lower than that level--four for an
ordinary user's process. Special procedure segments provide gates
for the setting of lower ring brackets. The access control lists
for these segments are administratively controlled to allow execute
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access only to privileged system administrators and developers.
Thus, the system can protect itself against the installation of
unwanted gates and privileges.

Ri { Direct 5 !

The ring brackets associated with directory segments are
analogous to those associated with data segments. The read bracket
controls status access to a directory, and the write bracket modify
and append access. As the supervisor only allows itself the
privilege of reading and writing in directory segments, all access
to such segments actually occurs while the processor iz in ring
zero. However the supervisor routines that operate on directories
compare the ring numbers of the routines that invoke them and the
ring brackets of directories to assure that protection is enforced.
As the operations on directories are performed interpretively by
these supervisor routines rather than by the hardware executing user
instructions, interpretive ring protection is efficient in the case
of directory segments.

A second characteristic of ring protection and directories
concerns the position of lower ring segments (of any type) in the
file system hierarchy. A lower-ring segment may appear in the
hierarchy subordinate to a directory with higher ring brackets., In
particular, a process has status, modify and append access in ring
four to its process directory which contains branches for a variety
of process-related segments. Among these segments are the process!
known segment table and process data segment which the process can
only affect through ring zero supervisor routines. To prevent the
process from altering or deleting such lower-ring segments while it
is executing in a higher ring, the file system imposes an additional
restriction--that access to branches in a directory is constrained
by the ring brackets for the branches as well as those for the
directory. Thus a user can list his process directory (status
access), create a new segment subordinate to it (append), or delete
such a segment (modify). However if he tries to replace, rename or
delete a lower-ring segment such as his known segment table, the .
file system refuses his request. If the supervisor created a
lower-ring directory segment subordinate to the process directory,
the user would be restricted by the read (status) ring bracket for
that directory from listing its contents, as discussed in the
paragraph above. 1In addition, the restrictions discussed in this
paragraph would prevent the user from deleting the directory and its
subordinate segments.
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Summary of Rings

Rirgs in Multies provide = powerful fundamental rechanism for
isolating the supervisor and its data bases from damage or deception
by user programs. This feature is of particular importance in the
treatment of argument addresses passed to the supervisor.

In essentially every other system the supervisor is protected
only by some primitive form of privileged mode (called master mode,
supervisor mode, privileged mcde, ete.) Each supervisor routine
must inspect arguments provided by a user program, not only
validating the argument values but also considering rather subtle
factors such as user arguments passed "second hand" by other
supervisor routines and the potential modification of arguments
after they are checked but before they are used. The net result is
an ad hoc "game of wits™ between the designer trying to think of all
the possible bad arguments, and the penetrator searching for one
case the designer overlooked.

In contrast, the ring mechanism {as an adjunct tc segmentation)
provides a fundamental argument validation mechanism that is
implicit regardless of how or when an argument is used. With rings,
an execution time check is completely based on the form (ring
brackets) rather than the yalue (memory location) of arguments. Thus
this one mechanism provides a basic solution to a number of argument
related vulnerabilities that is simply not attainable with the other
hardware architectures commonly used today.

In summary, the use of protection rings in Multics provides:

a. Execution time validation of arguments from less privileged
programs to more privileged programs.

b. Program controlled (interpretive) access to privileged
data, e.g., directory segments.

¢. An enviromment for support of user created privileged
subsystems, e.g., a data base management subsystem.

Memory Management--Demand Paging

The discussion of virtual memory above pointed out that a
segment is the smallest distinet entity of information subject to
access control and distinguishable by the two dimensional addressing
{ segment number, segment offset) hardware. However, - -a segment is
too large (64K words on the 645 and 256K words on the Level 68) to
use as a single entity in the management of primary {core) and
secondary (bulk store, disk, drum, etc.) memory. This problem is
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solved in Multics by the use of "demand paging", a scheme of growing
popularity in recent years. Paging is basically independent of the
~ccess control mechani:zms and, therefore, will not be disrussed in
detail. However, paging in Multics does provide a very efficient
solution to the security problems involving information residues.

Paging Mechani

Each segment in Multies is divided into a number of small
blocks or pages of uniform size (currently 1024 words each). The
directory branch for each segment includes a table that contains the
location (storage device and address within the device) of each page
of the segment. For segments currently being used (called "active
segments" in the Multics jargon) a page table is created in primary
{(core) memory and accessed directly on each reference by the
processor hardware to a segment. If the page is in primary memory
the hardware completes the reference; if not, it traps to a
supervisor routine that moves the page from secondary to primary
memory, makes it accessible to all processes with that segment
known, and then allows the processor to complete the reference.

This memory management is invisible to any user's program. The
details of the Multics paging mechanism are documented elsewhere

[8l.

Demand paging in Multics {(and other systems) is an effective
memory management scheme. All user pregrams and most supervisor
programs are totally independent of the number, size, and type of
primary and secondary storage devices. User programs have no need
for Moverlay" schemes to manage the memory accessible to them. Only
those specific pages actually used (referenced) are brought into
primary memory, and pages not actually modified in primary memory
are not moved back to secondary storage {since a valid copy is
already there). The end result is that each user has for his use a
very large (virtual) core that usually far exceeds the real
(hardware) primary memory available. This large available memory is
particularly useful in interactive and terminal based systems in
whieh the primary memory demands from user actions are difficult to
prediet and provide for in advance.

Although not directly part of the access control mechanism,
demand paging has two significant security implications. First, the
page transfer programs deal direotly with real, rather than virtual
resources--in particular absolute addresses. Therefore, these
routines must be correctly implemented to prevent information
spillage that would result from including an incorrect page in a
user's segment. Experientially, such "misroutes" are not in
evidence in Multiecs.
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The second security implication of paging is totally pragmatic.
Many contemporary operating systems have deep-rooted security flawa
resulting from de=igns intendesd to overcome the limitations of the
small, fixed blocks of memory available for use by the operating
system. Typically, when more space is needed, parameters, buffers,
or system routines will temporarily "borrow" user memory space and
thereby introduce various security vulnerabilities. In Multics,
such design approaches are avoided because individual segments can
grow independently (viz., one segment never grows into another) and
demand paging provides the operating system with the primary memory
required.

Residue Control

The control of residues (information left behind in storage by
some other user) is a major security problem in many systems.
Multics has a basic and efficient solution to this problem. The
usual ad hoe solutions to this problem involve overwriting (primary
and secondary) memory when it is taken from one user and/or when it
is given to a new user. Experience has shown that this approach has
two major problems:

(a) It is practically impossible to insure that all the
instances of residues are found and eliminated for all
cases; and

(b) It can be highly detrimental to efficiency to be
continually clearing all primary and secondary memory
that is allocated to all users.

Because Multics has both segmentation and paging, the residue
problem is solved in an effective manner. The previous discussion
of segmentation showed that (because of the segmentation hardware)
the only memory a user can access is that in a segment which he is
authorized to use. When a Multics segment is created it is
completely filled with zeros and throughout its life it will only
contain information that authorized users have placed in it. Thus
segmentation provides a fundamental solution to the problem of
residue.

It would be a very inefficient use of secondary storage if the
large number of segments containing mostly zeros were stored
directly. Fortunately paging provides a mechanism to solve this
practical problem. Each segment has a page map giving the actual
location of each page. For any page containing all zeros, Multica
uses a "null address"™ and the zeros are never actually stored on
secondary storage. When such a page is actually referenced, it
obviously cannot be transferred into primary memory from secondary
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storage, so the assigned page in core is actually cleared (set to
zeros}. This infrequent occurrence is the only condition under
which a residue is actually cleared. All other core memory residues
are automatically overwritten (when the core block is reassigned) by
pages read in from secondary storage. Similarily, all secondary
storage residues are automatically overwritten (when the storage is
assigned to a previously all-zero page) by pages written out from
core.

Summary of Memory Management

Multics uses demand paging to manage its real (physical) memory
resources. Although paging is not directly a part of the access
control mechanism its correct implementation is necessary to avoid
misrcuting of information. In addition, paging supports security by
providing a mechanism that avoids ad hoc (and vulnerability prone)
operating system storage management. Paging also provides an
effective solution to the problem of memory residues,

THE MULTICS INPUT/OUTPUT SYSTEM

The design of the Multics input/output system supports the same
access control concepts that have guided the other protection-
related elements of the system. The input/output (1/0) area of
computer systems has traditionally been a highly vulnerable one.
Multies has avoided past design flaws by subjecting I/0 operations
to the access constraints of the virtual memory, by drawing a
fundamental distinction between internal and external I/0 [5], and
by assuring that external I/0 is exclusively symbolic (to "virtual"®
devices)}.

Internal I/0

The fundamental concept of information storage in Multies is
that all of the storage media maintained by the computer facility
should be managed by Multics rather than the individual users.
Users then access all information as segments of the virtual memory
and are not concerned with specific storage locations on {(e.g.)
tapes or disk packs. The jinternal I1/0 used to create the virtual
memory is invisible to the user, and is part of the segmentation and
paging mechanisms discussed above.

The Multics internal information storage is organized into a
hierarchy according to storage device access speed and storage cost.
The Multics design allows a user to influence the speed and cost of
the storage media that hold his segments, but not to specify
physical storage locations or to write his own programs to perform
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the input/output. The user and user programs have no direct access
to specific media volumes or addresses, so the operating system need
rever perform ad hoc interpretive checking of user-specified I/0
requests. Internal 1/0 is always requested implicitly when the
user's program addresses a location in a segment. Access control
over internal I/0 is provided by the virtual memory mechanisms
described above. The programs within the Multics supervisor that
perform internal I/0 are simple--they need only read or write
fixed-length pages to or from secondary storage.

For large amounts of information (as anticipated by the Air
Force Data Services Center) there is a practical (economic) need to
store much of the information on demountable media such as disk
packs. Access times to these portions of the virtual memory would,
of course, be potentially long since the access times might include
the time required for an operator to obtain and mount the media
(just as in the more conventional case in which a user directly
stores his information through explicit I/0 to a tape or disk pack).
A major functional limitation of the present Multics is that
demountable internal I/0 media are not yet implemented.

External 1/0

One of the most powerful characteristics of the Multics design
is the totally symbolic nature of the external I/0. External I/0 is
that input/output which a user requests to transfer information
between his directly addressable {internal) virtual memory and an
external medium that can, for example, be read, punched, or carried
away. The cornerstone of protection in the Multics external I/0
system is that the user is given no interface for directly
controlling access to real devices. That is, the user cannot
provide the conventional (and usually vulnerable) "device control
words" or "channel programs". Although Multics does support the
classical user I/0 requests (like "read™ and "write"™ in the FORTRAN
language) these requests are always met through symbolically named
"I/0 streams™ to what are effectively virtual devices. The user's
only association with real devices is through the "attachment™ of a
logical device (e.g., a tape drive) which is part of the initial
setup of each I/0 stream for a process.

An implication of this virtual device approach is that external
I/0 is necessarily interpretive in that the operating system is
invoked to translate each I/0 operation requested by the user into
real hardware commands. While this interpretation is essential to
security (at least with current 1/0 architectures) it could be
argued that the interpretation of external I/0 imposes an
unacceptable inefficiency on system operation. Fortunately, the
efficiency problem is minimal because of the limited use in Multies
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for external 1/0. The fundamental concept in Multics is that
information being processed will be stored in the virtual memory and
acces=ed through the efficicrnt internzl I/0 mechanisms. Thus, in
Multics explicit user (external) I/0 is used only for the movement
of information into or out of the facility--for example to
terminals or to "stranger tapea" used to exchange information with
other installations.

The implementation of the external I/0 interface to real
devices, unlike the design, is the one area of Multics that seems to
have no simple underlying concepts for protection. Calls to the
operating system for 1/0 services are implemented in much the same
manner as similar functions in other contemporary systems. A
penetrator can expect to find areas in which the designers failed to
make an adequate check, and exploit the resulting vulnerability.
Because much of the Multics external I/0 system is rarely used, it
tends to include much old and poorly understood code. Until there
is a sound reimplementation of this area, it does not seem prudent,
even in a controlled multilevel environment, to permit general user
access to the gates that implement the interface to external I/0
devices.

Summary of 1/0

The Multics design provides an approach to I/0 that can give
effective protection, even with the lack of hardware support for
protection in the contemporary I/0 controllers and devices. The
design for external I/0 controls access by being totally
interpretive and symbolic. The impact of this approach on
efficiency is mitigated by reducing the role of external I/0 in
Multics, and by including all information in the system as part of
the directly addressable virtual memory (even demountable media can
be included in the virtual memory, and will be included in future
versions of Multics).

CONCLUSION

The Multics design provides for extremely widespread and
effective protection by applying a simple concept: The user
operates in a completely virtual environment. Information
accessible to the user, either in main memory or the file system, is
included in a unified segmented virtual memory. Every segment has
associated with it well-defined access rights for every user, and
the hardware and operating system cooperate to enforce the access
rights and restrictions. The virtual memory includes internal
(file) I/0 and completely hides internal I/0 operations from the
user. The paging mechanism used to implement the virtual memory
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eliminates "residue" problems in a complete and efficient way.
External I/0 is performed in terms of virtual devices and addresses
in segments. The operating cystem has a basis for ¢ mpletely
checking the legality of external I/0 requests. The protection ring
mechanism provides a flexible basis for isclating user and
supervisor programs and data. In particular, it allows the
operating system to detect, on a systematic basis, attempts to
"fool"™ the operating system with bad addresses.

The major residual weaknesses of Multics lie in its
implementation. The Honeywell 645 Multics processor had nc hardware
support for protection rings--instead, software was used to
provide protections rings interpretively. The attempt to provide
protection without excessive interpreting overhead resulted--as
will be seen in the next section--in some vulnerabilities. While
the Level 68 processor does have ring hardware, the transition from
old to new processors also offers the possibility of implementation
errors. The lack of a demountable segment mechanism in the current
Multics results in an extra cost for on-line disk packs and drives
in a facility that must handle many large files. Finally, the
external I/0 system, while conceptually simple, requires a complex
implementation with today's hardware. The resulting complexity
offers adequate chances for security-related errors and
vulnerabilities.

A final point about the Multics design concerns its use in DoD
classified processing environments. The basic Multics operating
system includes no concept of classification or clearance. Such a
concept must be devised and implemented if Multics is to support
users with differing clearances in processing variocus levels of
classified information.

In sum, the Multics design offers a sound basis for effective
security. The major design deficiency is the lack of a notion of
DoD classification and clearance, and it appears that this lack can
be remedied in a straightforward way. Some implementation problems
remain and, in one case (viz. external I/0), a solution will have to
await the introduction of new improved hardware.
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SECTION 4

SECURITY AND VULNERAEILITY OF 645 MULTICS

INTRODUCTION

This section discusses the results of the vulnerability
analysis of Multies for the Honeywell 645. The approach used in the
vulnerability analysis was to identify general areas of the system
and hypothesize a class of vulnerability in each area. Then that
class was explored until one exploitable vulnerability was
identified. The vulnerability and its exploitation were then
demonstrated. No attempt was made to pursue the exhaustive search
for "every" vulnerability that would be required by an attempt to
"secure™ Multics for use in an open multilevel environment.

The subsections below address the vulnerabilities that were
identified in the three major areas considered; hardware, software,
and procedures. More detail on each area is contained in Volume II
by Karger and Schell [13]. A final subsection below summarizes the
resources that were expended during the vulnerability analysis and
the significance of the results cbtained.

HARDWARE VULNERABILITIES

A traditional concern among developers of secure computer
systems has been the possibility that a hardware failure would
render the computer's access controls invalid, opening the way for a
would-be penetrator to access any information in the system [14].

An approach to eliminating such vulnerability has been to develop a
"subverter” program that runs periodicelly to ascertain that the
nominal hardware controls are still present. A subverter program
was developed and run on the Honeywell 645 at MIT in an attempt to
detect such failures if any occurred. The following paragraphs
discuss the results obtained by the subverter progran.

Probabilistic Fail

The subverter program for the Honeywell 6U5 was executed every
minute during 1100 hours of operation spread at random over about
one year. The subverter attempted to execute privileged and illegal
(undefined) instructions, to access segments in unauthorized ways,
and to perform illegal operations using some of the complex execute
instructions and address modifiers of the 645. During 1100 hours of
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operation, no security failures resulting from random hardware
failures were detected.

1gorithmic Fail

While the subverter did not detect any random failures, it did
produce two interesting results. Both were algorithmic--that is,
they can be reproduced by any 645 program that chooses to invoke
them at any time. The first subverter result was an undocumented
instruction. One of the 645 instructions (octal 471) which,
according to the processor manual is undefined, stores a word in the
location addressed by the instruction. The makeup and origin of the
word stored are not clear--the instruction has no discernable
impact on system security.

The second algorithmic result was more interesting. In
developing the subverter, special smphasis was placed on exercising
the execute instructions and addressing modes as these seemed to
require correct operation of very complex processor hardware.
During the operation of the subverter it was found that an obscure
combination of execute instruction and address modifiers, when
placed in the correct locations in two segments, would completely
bypass all access controls. A process using this combination could
read or write any segment for which it had a descriptor. This power
is sufficient, when exploited, to allow undetected access to any
information stored by the computer.

The existence of this "indirect instruction" vulnerability
seems to stem from a field hardware change made by Honeywell to all
645 processors. It appears that a rewiring of the processor for
some entirely valid purpose had the side effect of eliminating the
access controls in one obscure case.

SOFTWARE VULNERABILITIES

A traditional example of a software vulnerability in computer
security is a vulnerability that allows a user to write a program
that gains control of the processcr in superviscor (master) mode.

The 645 processor for Multics has an ordinary master mode like that
of the 635 processor from which it is derived--in the 645 a master
mode program can access in any mode any segment for which its
process has a descriptor, no matter what access rights are specified
by the descriptor. The protection rings of Multies are implemented
on the 645 by software that supplies a separate descriptor segment
with the appropriate access rights for each ring and that detects a
"directed fault®™ and switches descriptor segments whenever a process
switches rings. As will be seen in the next subsection, & complete
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penetration of Multics {(access to any information) could be achieved
by any program that obtained control of the processor in master mode
or obtained arbitrzry =zccesa tc¢ ring zero infurmation. The
following paragraphs discuss the three software vulnerabilities that
were detected and brought to the point of exploitability. Methods
of exploitation are discussed in the next subsection.

Argument Validation

Because the protection ring mechanism in 645 Multies is
implemented by software, programs are required to perform several
checks that are implemented by hardware in the follow-on Honeywell
Level 68. One such check concerns the validity of arguments passed
to the supervisor (or more generally from an outer ring to an inner
ring). As the inner ring procedure has access to segments of its
own ring, it must assure that it only reads or writes those segments
in accord with its own purpose--it must not be "fooled" by a request
from the outer ring.

A classic way to fool a supervisor into modifying itself or its
data base is to pass it an argument pointer that addresses (possibly
through a chain of indirect address pointers) supervisor storage.

In Multics for the 6U45 a procedure, the argument validator,
completed the indirect reference for each argument and checked the
descriptor segment to assure that the calling procedure had the
desired access to the argument finally addressed. Unfortunately the
interpretation provided by the argument validator failed to take
account of the fact that certain 645 indirect address words are
modified by the hardware whenever they are used. Thus, it was
possible to construct a chain of indirect words that was valid when
accessed by the argument validator, but not when used by the called
ring zero procedure. Supervisor procedures that read or write one
of their arguments into another (for example) could thus be ecalled
and used to read or write any segment accessible by a process in
ring zero.

The argument validation vulnerability was recognized at MIT apd
corrected by Release 18 of Multics. However, the existence and
exploitability of the vulnerability were demonstrated on the Multics
at Rome Air Development Center before Release 18 was installed
there.

Master Mode Transfer

As was mentioned above, master mode is a hardware artifact of
the 645 processor while ring zero is a creature of the Multics
software for the 645. Control of the procedures designated master
mode (by a bit in their segment descriptor words) is important since
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those procedures can access in any mode any segment for which there
is a deccriptor. A design convention for Multics initially required
that every master mcde procedure cxecute in ring zero. iowever, the
cost of the software that interpreted the "crossing® or transition
from ring to ring was relatively high and one master mode
procedure--the fault signaller--was allowed to execute in any ring
in an attempt to provide improved performance.

Programs executing in the same ring as the signaller were still
restrained from gaining arbitrary access to it, for a slave mode
procedure may only transfer to word zero of one that executes in
master mode. Code at the beginning of the master mode procedure is
expected to prevent the procedure from being "fooled" into an
improper action. The signaller procedure evaluates the function it
is requested to perform and, if that function is improper, it
assumes that a system failure has occurred and transfers to a
routine that shuts Multics down. Thus, a user can effect a system
crash by calling the signaller with a bad argument.

A worse vulnerability is also associated with the signaller.
The transfer to a shutdown routine referred to above is directed to
an address defined by one of the processor address registers (the
"linkage pointer")}. By loading the linkage pcinter with the address
of an arbitrary instruction in a master mcde segment, then calling
the signaller with a bad argument, a program can cause the execution
of the arbitrary instruction in master mode.

Exploiting the vulnerability outlined involved finding a master
mode instruction that had some "useful" effect gnd that was followed
by a transfer (or some such) instruction that would bring control
back to the exploiting program. An instruction that did a load or
store from (or to) an address specified by a pointer register was
ideal. A load instruction with the desired environment was found in
the signaller and a program written to test the exploitation.
Unfortunately, an old listing of the signaller was used to locate
the instruction. When the exploitation was tried, the transfer was
directed to an LDBR (Load Desecriptor Base Register) instruction that
in effect isolated Multics from its entire virtual memory. The
system crashed but the memory dump taken to diagnose the crash
proved unreadable because of the absence of any virtual memory. The
crash was attributed by the MIT system programmers to a disk
hardware failure, and the ESD/MITRE analysis team decided that the
master mode transfer approach, while exploitable, should be
abandoned as too risky without complete documentation.
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Another vulnerability was asscciated with the signaller
procedure and this, unlike the master mode transfer, was brought to
the point of exploitation. The pointer registers in the processor
can be "locked" by a master mode procedure so that a slave mode
procedure cannot alter them. At one time, in the design of the
Multics operating system, the "stack pointer" register was locked so
that it would always point to the stack segment used for argument
lists, temporary storage and sc on. As the system design progressed
it became clear that the inability to change stack segments was an
unacceptable limitation for some application subsystems, and the
stack pointer register was unlocked. At that time an "audit" of the
supervisor was made to detect and correct programs whose integrity
depended on the locked stack pointer.

The ESD/MITRE analysis team assumed that the original audit was
incomplete and conducted one of their own. It was found that the
signaller routine, before shutting the system down, stored all the
processor registers on top of the stack. Changing the stack pointer
would change the location where the registers were stored and, since
the signaller was a master mode procedure, that location could be
anywhere, even in another master mode sesment.

Exploitation of the unlocked stack pointer involved a two-step
procedure. First the processor registers were loaded with a
sequence of instructions and the stack pointer was changed to point
to a little-used master-mode procedure. The linkage pointer was set
to cause a return to the exploiting procedure and the signaller was
called with a bad argument. On return from the signaller the
instruction sequence--an "execute double" instruction and a
transfer to the exploiting procedure--had been stored in the
master mode procedure. Then a processor pointer register was set to
designate the two instructions to be executed in master mode and the
linkage pointer was set to point to the newly installed instructions
in the master mode procedure. A second call to the signaller with a
bad argument, and any two instructions could be executed with master
mode access privileges. These two instructions could read or write
any segment for which the process had a descriptor accessible in the
ring of execution of the signaller and the calling procedure. (Ring
four in the case of a penetration.)

This vulnerability was discovered and code to exploit it
developed during the fall of 1972. Because the exploitation
involved executing experimental programs in master mode, and because
it was desired to avoid crashing the MIT Multies, the programs were
developed and tested at Rome Air Development Center. The programs
performed satisfactorily and no crashes were caused at Rome.
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However typing errors were made in the course of moving the programs
from Rome to MIT and two crashes of the MIT system resulted.
Although the MIT system programmers were aware that something was
amiss, they did not detect the presence of a penetration or its
objectives, and the exploitation proceeded successfully at MIT.

PROCEDURAL VULNERABILITIES

The hardware and software vulnerabilities outlined above
provide a basis for obtaining complete control of a 645 Multics
system and complete access to any information it stores. The
details of gaining such control and access depend on the exact
structure of the Multics operating system and on the specific
control or access desired. The following paragraphs give a very
brief overview of the methods that were used to exploit the
vulnerabilities.

Pateh and Dump Utiliti

The hardware and software vulnerabilities described above give
a programmer the ability to read or write one word of a segment. As
a first step in exploiting the vulnerabilities, utility programs
were developed to write or read any word of any segment for which a
descriptor was available. The utility programs provided no
additional access to information but did incorporate sufficient
checking to guard against inadvertent errors and system crashes.

Changing the Process Identifier

When a Multics process attempts to make a segment known, the
operating system determines the validity of the attempt by comparing
the access control list entries for the segment with the process
identifier stored in the process data segment (PDS) for the process.
The PDS for a process is a ring zero data base, but is accessible to
master mode programs that operate in the user ring--such as the
signaller. The process identifier in the PDS is the "unforgettable
identifier™ [15] for Multics and determines whether the Multics
access controls will properly deny access to an unauthorized user.
The ability to read or write any segment for which a descriptor was
available provided by the vulnerabilities outlined above is thus a
sufficient mechanism to forge the unforgeable identifier and allow a
process to obtain valid access to any segment in the entire Myltics
hierarchy.

The patch and dump utility programs mentioned above were used
to implement a change-process command that altered the process
identifier in the PDS to that of any selected user-project
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combination. Before issuing the change-process command, the would-
be penetrator had to provide his "new identity" with access to any
routines ne-ded to ccmplete the exploitation -but this was easily
and legally accomplished via the standard Multics "set-access
control list" commands. After using the change-process command, the
penetrator was free to access any segment that was of interest to
him and was accessible to the user whose identity he had assumed.
The typical mechanism used to retrieve information was to copy the
desired information into a segment legally accessible to the
penetrator, then erase the audit trails (discussed below), and
return to the penetrator's legitimate identity. The likelihood of
detection while using the changed identity was remote, for the
internal consistency of the Multics operating system was preserved
vwhen the new identity was in use.

Erasing the Audit Trail

The most heavily audited area of Multics is that of login and
process creation. The answering gservice process that handles user
logins records instances of invalid identities and incorrect
passwords, and the identities of terminals from which they
originate. Certain events are logged as they occur on the Multics
operator's console as well as on-line storage. The system even
provides each user who logs in with a note of the time of his last
login and the terminal where it originated. Thus, a user can detect
the event of a second individual logging in by stealing his
password.

The audits surrounding the login process are both numerous and
hard to evade. As a user has no process in existence during the
time when the audit trails are being created, he cannot easily
reverse them. Fortunately for the penetrator, the forged process
identifier technique ocutlined above entirely bypasses the login
auditing. The penetrator logs in as himself, then makes an internal
change to a field of the PDS that is not used in auditing.

The approach outlined does, however, trigger one of the
auditing operations built into Multics. Whenever a process accesses
a segment it causes the "date-time used", "date-time modified", and
"date-time entry modified" values in the directory entry for the
segment to be updated as appropriate. A user listing a directory
containing a sensitive segment might notice that the segment had
been used or modified at an unusual time, and thus become
suspicious. Fortunately, Multics provides tools to eliminate this
audit trail. Commands are provided to reset each of the fields
jdentified above. (The reason for providing these fields has to do
with the need to restore the consistency of the file system after it
has been "backed up" from tape). These commands can be used by any
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process with modify access to the directory containing the sensitive
segment. Thus, it was only necessary for the penetrator to record
each f the three sensitive date-time ccmbinations before copying
{or modifying) the target segment, and to restore each with the
system-provided commands before resuming his own process identifier.

Ihe Passvord File

In past vulnerability analyses of computer systems, the file of
login passwords has typically been the prime target--it was clear
that a penetrator in possession of this file could access any
information in the system. In the case of Multiecs, the password
file is not especially valuable, because the approach already
discussed allows access to any information in the system without
raising the auditing problems that appear when one logs in with
another user's password. However, to demonstrate the completeness

of the penetration, it was decided to obtain a copy of the Multics
password file.

Copying the Multics password file was easy, given the tools
described. Passwords are stored in a segment called the "person-
name-table®™ (PNT) that is accessible to users on the SysAdmin
(System Administrator) project. Thus it was merely necessary to
change process identity to that of a SysAdmin user, copy the PNT,
restore its date-time used, and restore the penetrator's identity.

A minor complication associated with copying the PNT was the
fact that passwords in the PNT were enciphered. Although the cipher
was supposed to be one-way (that is, transformed passwords in the
PNT were compared to the result of the same transform applied to the
user's login password) an inverse was discovered and, with some
programming effort, implemented [16]. As a result, for a period of
some six months, the ESD/MITRE vulnerability analysis team had the
only cleartext copy of the MIT Multics password file.

(It should be noted that, even had the cipher in fact been
one-way, the passwords could still have been recovered. In this
case, the penetrator could have "bugged" the routine that encoded
the passwords to make a clear text copy of each password in a file
of his (the penetrator's) choosing. This latter approach is the
general counter to all encryption schemes applied in systems with
incomplete access controls.)

Elanting Trapdoors
Each of the vulnerabilities outlined above has a significant

disadvantage for the penetrator: it can be "fixed". The hardware
access controls could be rewired, the signaller moved to ring zZero,
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and S0 on. A penetrator who wished to obtain long-term access to a
Multics facility would be well advised to take additional steps to
assure his continued access. The=e steps can easily include the
planting of trapdoors--small blocks of code in sirategic programs
that, when called with "key" arguments, do the penetrator's bidding
in ring zero or in master mode.

Trap doors were planted in the MIT Multics programs by the
ESD/MITRE analysis team. Trapdoors in object programs were used to
insure guaranteed access if the original holes were fixed, and to
increase the convenience of changing the process identity. Such
object code trapdoors are hard to detect, but they "vanish" when the
system is recompiled. Source language trap doors, on the other
hand, "appear" when the system is recompiled and, if the facility
under attack is the system development facility (as MIT is for
Multics), they may even be distributed to other sites. Foreign code
was even installed in a 6180 Multies program to demonstrate the
ability to propagate vulnerability forward to a new system in which
all of the original vulnerabilities were corrected.

RESOURCES AND RESULTS

This subsection summarizes the resources that were required
during the vulnerability analysis of 645 Multics. It then goes on
to discuss the significance of the results that were achieved by the
analysis team.

Resources

Discussions of computer security frequently bring forth the
point that "there is no absolute security" and that "one must
consider costs and benefits to the penetrator®. 3Such discussions
are most convincing when pursued without hard data. To achieve the
results outlined in this section (except that of deciphering the
password file) required about two man-months of effort and less than
$2000 in computer time. These results provide a penetrator with
complete access to any information in any 645 (or, via a trapdoor,
6£180) Multics, and with the ability to repeat such access
arbitrarily often without danger of detection. A trapdoor installed
in 6180 Multics would allow the installation at MIT and distribution
of further trapdoors to provide more vulnerabilities in 6180
Multics.

Signific £ Resuli

A direct conclusion supported by the vulnerability analysis
reported here is that 645 Multics is not secure. Further, it is
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clear that 6180 and Level 68 Multics is jeopardized by the problems
with 645 Multies, for if the ESD/MITRE team could plant trapdoors
for distritution, others might also.

A more interesting conclusion is revealed by reviewing the
nature of the penetration mechanisms discovered. Each was based on
a compromise of an originally sound design. The signaller was moved
to the user ring and a vulnerability introduced; the stack pointer
was unlocked and a vulnerability introduced; a short cut was taken
in argument list checking and a vulnerability introduced; a hardware
flaw was "fixed" and a vulnerability introduced. In each case, the
original decisions were made as part of a coherent overall design,
then modified to achieve a localized improvements.d Further, the
ESD/MITRE analysis team was drawn in its review of 645 Multies to
exactly those areas where compromises were known to have been made.
The explicit structure of the Multies operating system resulting
from the use of segmentation and an underlying security design was a
major aid in the search for vulnerabilities. (A corollary is that
there is little excuse for these errors not having previously been
found and corrected.)

The paragraph above is not intended to say that, had the 645
Multics implementation stayed with its original design, a secure
system would have resulted. There was not, even in that design, a
complete set of security principles and a proof of their
sufficiency. However, security was a fundamental consideration in
the Multics design and that design should have had few
vulnerabilities if implemented properly. By compromising the
initial principles, the implementers placed reliance on ad hoe
checks--on finding every vulnerability while confronted with a
penetrator who must find any vulnerability--and fared no better
than others who have pursued the same path.

A final significant result of the vulnerability analysis
concerns trapdoors. The analysis demonstrated the feasibility of
installing a trapdoor that would be distributed by Honeywell to
every 6180 or Level 68 installation. This approach seems to be the
most economical and least risky one available to a serious
penetrator. While the analysis team demonstrated a trapdoor
installation using software penetration, a hostile agent might take
advantage of the open development environment that supports Multies
to achieve the same end.

4 For completeness, it is noted that each of these vulnerabilities
was corrected by the improved security hardware of the 6180.
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SECTION 5

FROSPECTS FOR SECURITY CF 180 MULTICS

INTRODUCTION

This section discusses the prospects for security in the
Multics implementation for the Honeywell 6180 and Level 68.5 The
subsections below address in turn the issues of trap doors,
vulnerabilities, and compliance with military security requirements.
A final subsection presents conclusions on the overall security
posture of 6180 and Level 68 Multics.

TRAP DOORS

The preceeding section described the relative ease of
penetrating Multics on the 645 and of accessing any information
gtored in the system. Among the objects of information stored by
the 645 Multies at MIT were the master copies of the source and
object programs for Multies. It was on this installation that the
initial Multics programs for the 6180 were developed and the initial
system tapes for the 6180 produced. Thus, a penetrator who attacked
the 645 could have installed trap doors in code that would later run
as the 6180 Multics operating system--assuring himself access even
if the design and implementation of 6180 Multics were perfect.

The hypothesis that trap doors are present in 6180 Multics
seems a far fetched one--even to the author of this report. To
appear in perspective, this hypothesis must be addressed in two
parts: the likelihood that a trap door would be planted and the
likelihood that it would be detected. The following paragraphs
discuss each prospect in turn.

The prospect of a hostile or merely mischievous individual
inserting a trap door into 6180 Multics is hard to assess. The
problem is one of an intelligence threat assessment. Suffice it to

5 The instruction set and protection features of the 6180 and Level
68 processor are the same; the Level 68 uses more modern and faster
circuits than the 6180. A description of the 6180 and Level 68
architecture is contained in [17].
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say, however, that Multics was developed under ARPA sponsorship, and
was a subject of interest to the military for some time prior to the
AFDSUC acquisition. Thus, if there were an active program of
planting trapdoors by a hostile agency, Multics might be a logical
target. Its status as a target might be enhanced by its reputation
for security and integrity, which might lead one to speculate that
it would at some point be used in a multilevel security environment.

The prospect of a trapdoor avoiding detection is somewhat
easier to address. Code for a trapdoor may be made arbitrarily
obscure and, to avoid detection, should be concealed in a module
unlikely to underge close inspection or frequent revision. Code in
about the amount required for a trapdoor was inserted in the code
for 6180 Multics by the ESD/MITRE team and had escaped detection
through the date of drafting of this report (some ten months later).
Thus, it is probably reasonable to assume that an individual with
the ability to penetrate 645 Multics could insert in 6180 Multiecs a
trap door capable of evading detection.

The only viable response to this trapdoor threat is to control
the environment in which the system is used. This measure has the
effect of restricting exploitation of the trapdoor to one of a known
set of individuals--and one who possesses some level of security
clearance. The benefit of the controlled environment in reducing
system vulnerability is thus a significant one.

VULNERABILITIES

A discussion of vulnerabilities in 6180 Multics must be
somewhat speculative for, as of the drafting of this report, no
vulnerability analysis had been pursued on the 6180. However two
facts are reasonably clear even before such an analysis is pursued:

(1) The vulnerabilities that were exploited in the penetration
of the 645 are corrected by the ring hardware for the 6180; and

(2) It is very likely that other vulnerabilities are present
in 6180 Multics, in areas where compromises were made between
"clean" design and efficient, convenient, or quick
implementation.

It should further be noted that even in the absence of compromises
with design principles, one could only demonstrate that 6180 Multics
were gsecure if the design principles were proven consistent with a
(presumably formal) secure system model using a well-defined process
to establish the required correspondence.
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An area of particular interest in pursuing a vulnerability
analysis of 6180 Multies will be the input-output system. As
Section 3 pointed out, the use of trtally symbolie--that is,
virtual--input/output (no direct user commands to the 1/0
controller) is a powerful technique for security; however, the
present implementation of the Multies input/cutput system is
relatively conventional, and a fair degree of complexity is needed
to support the translation from virtual memory objects to the real
memory locations required by the input-output multiplexor. A
penetration attempt aimed at exploiting this complexity should have
a fair chance of success, No such effort was directed at the 645
Multies input-cutput system because much easier and more obvious
ways of demonstrating the system's vulnerability were discovered.

As a footnote to the discussion of 6180 vulnerabilities, it
should be noted that, in the initial production implementation of
6180 Multics, the "template descriptor segment" used by the
operating system to build descriptor segments for new processes
included a Ring 4 gate to a highly privileged supervisor segment.
Thus, any process was allowed to call on those highly privileged
routines contained in that segment--and to use them to crash the
system, write on the operator's console, or (in general) reconstruct
the operating system. A two-minute inspection of the listing of the
template descriptor segment used by the Multics supervisor to build
descriptor segments for users at login was adequate to discover this
vulnerability, and it was brought to the point of limited
exploitation [18]. Once system maintenance personnel became aware
of the problem (after the exploitation was demonstrated) they
detected and corrected this vulnerability.

MILITARY SECURITY REQUIREMENTS

A matter somewhat separate from that of system integrity
concerns the suitability of Multics for the processing of government
classified information. The concern in this area is for the
presence of system features for handling the military system's
security attributes of level, category or compartment, and need-to-
know.

At present, Multics controls access to information on a need-
to-know basis. The accesas control list (ACL) is a mechanism that
allows a user's process to identify those processes that can have
access to a segment. The controls over access to directories
provide a well-defined hierarchical organization for controlling
need-to-know. There is, however, no concept in Multics of security
level or category.
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There are a number of practical reasons why a computer system
that will be used to handle classified information should explicitly
#1low for classification and category. One such reason is that a
system user should be provided automated assistance in determining
the sensitivity of computer products--if a report has been
prepared from segments classified seoret and confidential, that
report is most likely secret itself. The recipient of the report
should be made aware that it may be secret so that he can safeguard
it as secret or review it for a lower classification,

A more important issue in a multilevel computer system concerns
the granting of access to information and the so-called "trojan
horse" problem. A user who has modify access to a directory in
Multics may grant any Multics user acceas to any segment subordinate
to that directory. Thus, a user with appropriate access could allow
a secret cleared user to read a top secret segment. Presumably, a
conscientious user having such access would not do so, but two
further issues arise:

(1) A user granting access should know that the potential
clearance of any process which he allows to access information
is consistent with the classification of the information; and

(2) A user accessing information does so through a process
composed of programs in execution. Those programs may set the
ACL for a segment on his behalf--with or without his explicit
knowledge. A so-called "trojan horse" [19] program written by
an untrusted individual and used on a sensitive segment might
set the ACL on the segment so that another process could access
it--without the knowledge of the responsible user.

A straightforward solution to the problems outlined above is to
introduce the concepts of classification and compartment into
Multics. Classification and compartment attributes can be applied
to processes, segments, directories, terminals and interprocess
communication channels. Users can be assigned clearances and a
suitable set of algorithms introduced into the operating system to.
interpret the security attributes and allow or deny access as
appropriate. A basis for these algorithms, with sufficient power to
render "trojan horses" ineffective, has already been defined by Bell
[20] and Walter [21].

CONCLUSION

The paragraphs above have discussed the probable security
posture of Multies for the Honeywell 6180 and Level 68. The
discussion, while fairly general, points to the conclusion that a
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hostile agent should be able to develop a program to penetrate the
current 6180 Multies. Further, there appears to be a possibility
that a "trap deor"™ could be present in (or introcuced into) 6180
Multics. In either case, with the widening availability of Multics
computers, it should be possible for a penetrator to develop his
tocls well away from AFDSC and bring them to an AFDSC Multies in a
form ready to run with little time and no noticeable impact.

On a less speculative front, it is clear that 6180 Multics in
its present form does not include features to aid in the management
of government classified information or to prevent the operation of
"trojan horses®. For Multics to be used to process multiple levels
of classified information in a convenient and controlled way, such
features should be added.

Section 7 presents a series of recommendations for action
aimed at making an AFDSC Multics usable in a controlled multilevel
security mede. These recommendations are based on the results and
conclusions of this section and Section 4.
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SECTION 6

LONG-TERM PROSPECTS FOR SECURITY IN MULTICS

INTRODUCTION

This section discusses the long-term prospects for implementing
a secure multilevel computer utility based on Multies. It begins
with a general discussion of the principles that are the basis for
implementing a certifiably secure computer system. Then follows a
discussion of the applicability of these principles to the Multics
hardware and operating system.

CERTIFIABLY SECURE SYSTEMS

Introduction

This subsection discusses the technical principles on which the
development of a certifiably secure computer system can be based.
The initial subsection below provides a bit of background tc the
development of the principles. Then follows a discussion of the
basic requirements that a secure system's hardware and software must
meet. The final subsection discusses the requirements imposed by
the need for "ecertifiable security". Much of the material that
follows has been taken- from [22] which presents a more detailed
picture of the intermediate development steps that can lead to a
certifiably secure computer system based on Multies,

TIhe Computer Security Technology Panel

In an attempt to determine the reasons for the impossibility of
securing the GCOS III operating system at AFDSC, and to identify
ways of solving future multilevel security problems, ESD in early
1972 convened a computer security technology planning study panel,
The panel operated under a contract from ESD to James P. Anderson
and Company and was directed to prepare a development plan
representing a coherent approach to attacking the problems of
multilevel computer security. The panel's report [3] identified the
problem of completeness--that as long as even one security-related
defect remains in a computer or operating system, that system
provides absolutely no protection against a hostile penetrator (who
may access any information in the system at will). The panel thus
recognized the futility of "patching holes™ in an operating system
like GCOS III as an ad hoc search for absolute perfection.
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The techniczl approach recommended by the pancl was "to start
with a statement of an ideal system, a model, and to move the
statement through various levels of design into the mechanisms that
implement the model system®™ [3], p. iii. The following paragraphs
discuss the characteristics of the "ideal system"™ as proposed by the
panel and detailed by subsequent efforts.

Ihe Reference Monitor

The basic component of the ideal system proposed by the
security technology panel is the reference monitor--an abstraction
that controls the access of subjects (active system elements) to
objects (units of information) within the computer system. Figure 5
presents a schematic diagram of the relation among subjects,
objects, reference monitor, and reference monitor authorization data
base. The figure gives examples of typical subjects, objects, and
data base items.

In operation, an implementation of the reference monitor allows
or forbids access by subjects to objects, making its decisions on
the basis of subject identity, object identity, and security
parameters of the subject and object. The reference monitor
implementation both mechanizes the access rules of the military
security system and assures that they are enforced within the
computer.

The security technology panel stated that a reference monitor
implementation must meet the following three requirements in order
to provide the basis for a multilevel secure computer system:

a. Completeness--the implementation must be invoked on every
access by a subject to an object;

b. Isolation--the implementation and its data base must be
protected from unauthorized alteration;

¢. CLertifiability--the implementation must be small, simple
and understandable so that it can be tested and verified to
perform its functions properly.

Both the requirement for completeness and that for certifiability
demand that the mechanism that implements the reference monitor
include hardware as well as software--the former because software
validation of every access by a subject to an object would add
intolerable complexity and overhead; the latter because certain
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hardware architectures preclude the construction of a simple
understandable (perating system. The hardware/software mechanism
that implements the reference monitor has been called the "security
kernel™. When the hardware is specified, the software part of the
implementation is sometimes referred to as the security kernel for
that hardware.

Recognizing the importance to achieving computer security of
the panel's ideal model of a reference monitor, ESD initiated the
development of a mathematical model of computer security.
Preliminary efforts were performed by ESD [22] and the initial model
development was completed by The MITRE Corporation. A later
modelling effort using an alternate approach has been pursued in
parallel with the MITRE work by Case Western Reserve University.

The MITRE model [20] represents a secure computer system as a
finite-state mechanism that makes explicit transaitions from one
security state to the next. The state of the system is defined by:
(a) the classifications and formal categories of all subjects and
objects; (b) the need-to-know relationships of subjects and objects;
(c¢) the hierarchical organization of objects (in a storage system);
and (d) the current ability of subjects to access objects. The
model specifies rules that define formally the conditions under
which a transition from state to state may occur. The rules are
proven to allow only transitions that preserve the security of
information in the system. A significant property of the model is
the #*-property that states that all but trusted programs are
restricted from writing information at a lower classification (or
proper subset of categories) than they read. The restriction
prevents information obtained at the higher security level from
being transferred to a lower level where it can be accessed
illegally. This property eliminates the need to certify that
programs such as editors and utility routines do not act as "trojan
horsea" and downgrade classified information.

The finite-state model specifies the secure operation of a
system composed of subjects and objects. A security kernel must
implement representations of both the rules of the model and the
subjects and objects these rules control. The implementation of
subjects and objects is constrained by the hardware on which the
kernel operates. If the hardware does not facilitate the simple
implementation of subjects and objects, the third of the panel's
requirements for a reference monitor will not be met. The panel
recognized this fact and recommended for secure computer systems the
use of deseriptor-driven processors that implement segmented
memories. With such processors, the objects of the model can
correspond to the segments supported by the hardware. A properly
organized segmented memory that merges primary (core) and secondary
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storage management functions eliminates from security consideration
any separate, complex, and security-related "file system". Further,
the subjects of the model correspond to processes (address space-
processor state pairs) supported directly by a descriptor-driven
processor,

The security kernel defined by the model and implemented on
descriptor-driven hardware is a simple software mechanism that
implements only the security rules, subjects, and objects. It does
not provide the full facilities of an operating system; it could not
do so without developing so much complexity that it would no longer
be a security kernel. Instead, the complex functions required of an
operating system are provided by programs external to and controlled
by th kernel. These funetions can be arbitrarily complex but are
not security related. However, some may be sensitive in terms of
assuring the smooth operation of the computer system. For example,
a typical operating system (not kernel) function like a scheduling
algorithm cannot compromise information, but it can slow service to
users.

To assure that user programs can be separated from (and kept
from interfering with) such sensitive programs, the MITRE
development efforts in multilevel security identified the need for
hardware with at least three separate domains of execution (states
of program privilege). Of these, one can be allocated to the
kernel, the second to the operating system, and the third to user
programs. The kernel can easily protect the operating system from
user programs and, because of the organization of the hardware, the
transitions from one domain to another can be rapid and efficient.

In summary, this subsection has identified the concepts of a
security kernel and discussed a model of a kernel that represents
the secure operation of an ideal reference monitor. It has also
mentioned the requirement that the kernel implement subjects and
objects, and pointed ocut that their simple implementation hinges on
the architecture of the computer on which the kernel is based. In
particular, secure computer hardware is required to provide a .
segmented memory and at least three processor domains. The above
discussion has not been explicit about the transition from the model
to programs that implement a kernel on specific hardware. A
discussion of that transition is included in the next subsection.

3 itv Certificati

A design for a security kernel to control suitable hardware is
extremely small and simple, when compared to a design for a normal
operating system. The design of a security kernel that can support
general-purpose computing on a Digital Equipment Corporation
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PDP-11/45 minicomputer, for example, can be implemented by a small
(less than one thousand line) structured computer program, and
follows the MITRE mathematical model directly [23]. However, it is
still necessary to verify that the objects and subjects provided by
the kernel are those specified by the model. An approach to
providing this verification has been identified and is being
pursued. This approach is based on the work of Price [24] as
refined by Robinson, et al [25]. The approach involves preparing a
formal specification for each function of the kernel and identifying
those assumptions on which the correct operation of each function
depends. The specifications of functions are proven consistent with
the requirements of the security model. A proof is then constructed
that demonstrates that all of the assumptions are preserved by all
of the functions. Successive more detailed specifications for each
function are constructed and proven to implement the first
specification correctly. The final detailed specifications of
functions are close to a programming language and facilitate proof
or verification of the code that implements the specified kernel
design.

In summary each step in the sequence from model to kernel code
must be subject to proof or verification. The process of
certification then becomes a positive one--the assessment of well-
identified and reasoned proof steps--rather than an exhaustive and
an exhausting quest for perfection in the operating system in which
no constructive definition of perfection exists.

MULTICS AND CERTIFIABLE SECURITY

The following paragraphs discuss the prospects of Multics for
supporting the development of a certifiably secure computer system
based on the principles defined above. The initial discussion
considers the 6180 and Level 68 Multics hardware; the Multics
operating system and application programs are addressed by the
second subsection below.

Hardware

The subsection above mentioned the need for a descriptor-driven
segmented memory and for multiple domains of execution to support a
certifiably secure system. The paged segmented virtual memory of
the 6180 Multics processor meets the former requirement fully, and
the protection rings provide an adequate mechanism for meeting the
multiple domain requirement. Thus, the 6180 processor. will support
the implementation of a security kernel.
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The input-output architecture of the 6180 is both more
conventional and less hospitable to a kernel than that of the
proce=sor., While internal irput-output is part of the operation of
the segmented virtual memory and performed only by a security
kernel, external input-output (viz. to a terminal) is performed at
direct user request. It is in the specific area of external input-
output that the 6180 hardware architecture raises concern.
Fortunately, the 6180 uses both totally symbolic external I/0 and a
separate processor (a Datanet 355) to effect external input-output,
and it appears feasible to replace this processor with a secure
minicomputer with a kernel to provide a complete secure path for
external input-output.

Software

Multics does not today include a security kernel. If a Multics
operating system is to be certified as secure, such a kernel must be
developed to control the 6180 hardware in compliance with a
mathematical model of secure operation. Such a kernel must be
developed "from scratch" though the hardware is already known to be
suitable,

In the areas of non-kernel operating system software and of
application software Multics has a significant advantage. The
Multics operating system software is written to control and exist in
a segmented virtual memory. Thus, it offers a substantial degree of
compatibility with a security kernel environment. The operating
system programs would have to be modified, not scrapped and
rewritten, to coexist with a kernel. As the kernel is (by
definition) a complete security control mechanism, the non-kernel
operating system programs need not in any sense be "secured". As
development planning estimates indicate that a kernel will not be as
costly as the remainder of an operating system, the compatibility of
Multics yields a considerable saving in the cost of developing a
prototype of a secure system.

The saving for application programs should be even greater than
that for the operating system. Nearly all application programs for
Multics should run unaltered on a modified Multics with a kernel.
This statement is made especially true if only symbolic I/0 is
permitted and if the notions of classification and category of the
military security system are incorporated in the "near-term" 6180
Multies discussed in Section 5. Then only programs that attempt to
perform inherently unsecure operations will be invalidated by a
kernel.
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CONCLUSION

Multies and the Honecywell 6180 and Level 63 provide a
singularly appropriate foundation for a certifiably secure system.
The technology to support the development of such a system is
already known and relatively mature.
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SECTION 7

RECOMMENDATIONS

INTRODUCTION

This section presents recommendations for the use of Multics at
AFDSC. The recommendations are presented in three subsections
dealing with near-term development efforts, near-term use of
Multics, and longer-term development efforts.

NEAR-TERM DEVELOPMENTS

Sections 4 and 5 identified security weaknesses and
deficiencies associated with the Multics operating systems for the
645 and 6180. If 6180 Multics is to be used in a controlled
environment for the simultaneous processing of secret and top secret
information, the following development steps are indicated:

(1) Conduet an analysis of 6180 Multics to identify existing
vulnerabilities that can be found and direct that they be
corrected. The explicit structure of the Multies security
controls should make this analysis much more productive than
those for more conventional systems.

(2) Eliminate from 6180 Multics those functions that comprise
major areas of potential vulnerability and whose functionality
can be provided in an alternate way. The major such area
identified to date is direet user control of tape input-output.
An alternative--system control of tape I/0 by a process that
provides a well-defined interface to user programs and is
developed by cleared individuals--can provide the required
functions.

(3} Add the attridbutes of the military security system
{classification and compartment) to segments, directories,
processes, and other objects managed by Multies. Use these
attributes in controlling access, as specified by existing
computer security models. Provide appropriate tools for
controlling these attributes, including those required by a
system security officer.

(4) Recompile the Multics operating system in the AFDSC
environment to eliminate possible object code trap doors.
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(5) Review for source program trap doors all directly
security-related ring zero modules {such as those that create
deseriptors). Such a review will presumably be inecluded in the
vulnerability analysis of (1) above. In addition, review a
random sample of (ostensibly) non-security related ring zero
routines and routines used for system generation (such as those
in the compiler) for source code trap doors.

(6) Provide an auditing capability to allow a system security
officer to assure that the system is being used properly. Such
auditing should cover actions by the security officer as well
as users, and should allow the security officer some latitude
in determining what user actions are audited, and when.

(7) A review of the 6180 operation codes, addressing, and
timing should be conducted to detect possible errors in
hardware design and implementation.

(8) A subverter program should be developed to detect possible
hardware failures that might effect security. The subverter
should be programmed to test different combinations of
instructions, execute instruetions, and addressing organization
in an attempt to identify algorithmic hardware problems like
the one in the 645.

{9} New features introduced to provide the AFDSC Multics with
added utility such as embedded GCOS and batch processing
features, should be developed within the basic Multics
structure and should operate subject to all security and access
controls.

As part of the planning for installation of a 6180 at AFDSC and
its use in a controlled environment, Honeywell conducted, under Air
Force contract, a design analysis that addresses the points raised
under (2), (3), and (6) above [26].

SYSTEM USE

A Multics operating system that has undergone the modifications
outlined above can be used in a controlled environment with secret
and top secret users and information. There is a risk, in such a
mode, that a secret-cleared user will "go bad®™ and, possibly in
collusion with an outsider in the Multics development environment,
begin to access top secret data. Recommendations aimed at
preventing such an event are:
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(1) The Multics software at AFDSC should be
configuration-controlled and protected from modification "as
though top secret",

(2) All new ring zero operating system modules and all new
modules in the system generation software should be reviewed at
AFDSC for trap doors and should be compiled at AFDSC.

(3) The system security officer at AFDSC should be aggressive.
He should review the audit trails, monitor users' usage
patterns, and periodically (and at random) monitor users'
console sessions for suspicious activity.

(4) Under no circumstances should uncleared individuals be
allowed to submit jobs to an AFDSC Multics, or to receive
unscreened outputs. This restriction supports the controls on
the system environment and limits the opportunity to exploit a
trapdoor if one is present.

(5) The subverter program should be run whenever the AFDSC
Multics is in operation. Any anomalies detected by the
subverter should be analyzed until an exact cause can be
determined.

(6) Hardware modifications to the 6180 (especially the CPU)
should be reviewed and understood by cleared personnel before
being installed, to avoid the introduction of hardware flaws or
trap-doors.

LONG-TERM DEVELOPMENTS

In the longer term, the Multics hardware and operating system
provide an attractive base for the development of a secure system
capable of supporting open multilevel operation without the major
risks of developing a completely new hardware-software system using
a previously untried design. If such operation is required as a
future capability by AFDSC, then AFDSC should:

(1) Express its requirements for such an open multilevel
system through formal Air Force channels.

(2) Coordinate its use of Multics with long-term research and
development efforts in order to provide a smooth transition
from the near-term two-level Multies to the open multilevel
system. :

55






ll

REFERLNCES

C. W. Beardsley, "Is Your Computer Insecure?", IEEE Spectrum,
January 1972, pp. 67-78.

L. Smith, "Architectures for Secure Computer Systems,"

ESD-TR~-75-51, Bedford, Massachusetts,: The MITRE Corporationm,
April 1975,

J. P. Anderson, "Computer Security Techmology Planning Study,"
ESD-TR-73~51, Volume I, Fort Washington, Pennsylvania:
James P. Anderson & Co., October 1972,

M. D. Shroeder, "Performance of the GE~645 Associative Memory
While Multics is in Operation," Proc. ACM Workshop on System
Performance Evaluation, Harvard University, April 1971,

pp. 227=-245,

E. L. Burke, “"Concept of Operation for Handling I/0 in a Secure
Computer at the Air Force Data Services Center (AFDSC),"
ESD-TR-74~-113, Bedford, Massachusetts,: April 1974.

G. E. Reynolds, "Multics Security Evaluation: Exemplary
Performance Under Demanding Workload," ESD-TR-74-~193, Volume IV,
Bedford, Massachusetts,: Ailr Force Electronics Systems Division,
June 1974.

S. M. Goheen and C. D. Jordan, "Evaluation of TICS: A Multics
Subsystem for Development and Use of CAI Courseware,"
ESD-TR-75-56, Bedford, Massachusetts,: The MITRE Corporation,
1975.

A. Bensoussan, C. T. Clingen and R. C. Daly, "The Multics
Virtual Memory: Concepts and Design,' Communications of the ACM,
Volume 15, Number 5, May 1972, pp.308-318,

R. J. Feiertag and E. I. Organick, '"The Multics Input/Output
System,"” Proc. of ACM Third Symposium on Operating Systems

Principles, Palo Alto, California, 1971, pp. 35-41.

57



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

LTFERTNCES (Continued)

E. I. Organick, The Multics System: An Examination of Its
Structure, Cambridge, Massachusetts,: MIT Press, 1972.

M. D. Schroeder and J. D. Saltzer, "A Hardware Architecture for
Implementing Protection Rings," Communications of the ACM,
Volume 15, Number 3, 1972, pp. 157-170,

J. H. Saltzer, "Protection and the Control of Information in
Multics," Communications of the ACM, Volume 17, Number 7,
July 1974, pp. 388-420.

P. A, Karger and R. P. Schell, "Multics Security Evaluation:
Vulnerability Analysis," ESD-TR-74-193, Volume 2, Bedford,
Massachusetts,: Electronics Systems Division (AFSC), L. G.
Hanscom Field, June 1974.

L. M. Molho, "Hardware Aspects of Secure Computing," Proceedings
AFIPS 1970 SJCC, Montvale, New Jersey,: AFIPS Press, pp. 135-141,

B. W. Lampson, "Protection," Proc. Fifth Princeton Symposium on
Information Sciences and Systems, Princeton University, March 1971,
pp. 437-443. Reprinted in Operating Systems Review, 8,1,

January 1974, pp. 18-24.

P. J. Downey, '"Multics Security Evaluation: Password and File
Encryption,” ESD-TR-74-193, Volume III, Bedford, Massachusetts,:
Electronic Systemg Division, June 1974.

E. L. Burke, M. Gasser and W. L. Schiller, "Emulating a Honeywell
6180 Computer System,'" RADC-TR-74-137, Bedford, Massachusatts,:
The MITRE Corporation, June 1974. -

T. Alexander, "Waiting for the Great Computer Rip-0ff," Fortune,
Volume XC, Number 1, July 1974, pp. 142-150.

D. Bransted, "Privacy and Protection in Operating Systems,"
Computer, Volume 6, Number 1, January 1973, pp. 43-47.

D. E. Bell and L. J. LaPadula, "Secure Computer Systems,"
ESD-TR~73-278, Volume I-III, Bedford Massachusetts,: The MITRE
Corporation, November 1973 - June 1974,

58



21.

22,

23.

24,

25.

26.

FEFFEENCES (Coneluded)

K. G, Walter, W, F. Odgen, W. C, Rounds, F. T. Bradshaw,
5. R. Ames, Jr,, and D. G. Shumway, "Primitive Models for
Computer Security," ESD-TR-74-117,, Cleveland, Ohio,: Case
Western Reserve University, Januapy 1974.

R. R. Schell, P. J. Downey, and G. J. Popek, "Preliminary Notes
on the Design of Secure Military Computer Systems," MCI-73-1,
Bedford, Massachusetts,: Electronic Systems Division (AFSC),

L. G. Hanscom Field, January 1973,

W. L. Schiller, "The Design and Specification of a Security
Kernel for the PDP-11/45," ESD-TR-75-69, Bedford, Massachusetts, :
The MITRE Corporation, May 1975.

W. R. Price, "Implications of a Virtual Memory Mechanism for
Implementing Protection in a Family of Operating Systems,"
Ph.D. Thesis, Pittsburgh, Pennsylvania,: Carnegie-Mellon
University, June 1973.

L. Robinson, P. G. Neumann, K. N. Levitt, and A. R. Saxena,
"On Attaining Reliable Software for a Secure Operating System,"
1975 International Conference on Reliable Software, Los Angeles,

California, April 1975, pp. 267-284,
Honeywell Information Systems, "Design for Multics Security

Enhancements," ESD-TR-74-176, Bedford, Massachusetts,: Electronic
Systems Division (AFSC), L. G, Hanscom Field, December 1973.

59






INTERNAL

D-70

J.
W.
J.

J. Croke
S. Melahn
W. Shay

D-73

S.

B. Lipner

D-75

TEOE®n

t UFQFZEHH

R. Ames, Jr.
Amory

L. Baldauf
L. Burke
Chess

A. Clapp

L. Connors
J. Corasick
Ferdman
Gasser

B. Glore
Hazle

W. Lambert
J. LaPadula
K. Millen
G. Miller
E. Nibaldi
M. Sheehan
D. Tangney
S. Tasker
N. Wagner

LY RLCOOD L
-

Withington

. L. Woodward

DISTRIBUTICN LIST

EXTERNAL

Electronic Systems Division
Hanscom Air Force Base
Bedford, MA 01731

T0I

Col. N. Michaud

TOIT

Lt. Col. C., J. Grewe
P. R. Veckery

61






